簡易檢索 / 詳目顯示

研究生: 陳毓雯
Chen, Yu-Wen
論文名稱: Fas在肺部表皮及纖維母細胞上受IFN-g及TGFb1調控的意義
The Fas on lung epithelial cells and fibroblasts is regulated by IFN-g and TGFb1
指導教授: 黎煥耀
Lei, Huan-Yao
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 56
中文關鍵詞: 肺部表皮細胞細胞凋亡肌肉纖維母細胞纖維母細胞
外文關鍵詞: aphla-smooth muscle actin, IkappaB, apoptosis, TGF beta1, IFN-gamma, anti-Fas, smad
相關次數: 點閱:101下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   嚴重呼吸症候群是一種新興疾病,起因為SARS病毒的感染。患者在發病後期常會併發非典型肺炎,導致患者急性的嚴重肺部創傷,或進一步導致肺部纖維化的發生。由於此疾病死亡率高(10~15%),且在爆發其間造成許多國家的醫療與經濟損失,因此了解此疾病的致病機轉,進一步提供醫療對策,實為當務之急。本實驗室之前分析來自台灣疾病管制局88位SARS病人血清檢體中的細胞激素表現,感染急性期有干擾素-g相關激素風暴的現象 。除此以外,相關的臨床證據也看到,通常疾病發作一星期後病毒量都已降低,顯示不正常的免疫反應在此疾病中扮演著重要的角色。 因此我們利用體外的系統探討,是否一些病人中高量表現的細胞激素可能造成肺部表皮細胞的死亡,或是肺部纖維母細胞不正常的活化—代表體外系統看纖維化發生的指標。由於 IFN-g及TGFb1這兩種細胞激素,都可在SARS病人中有不正常的高量表現,且都可能影響肺部表皮細胞的細胞凋亡,或肺部纖維母細胞的活化,因此我們進一步了解當兩種細胞激素共同存在時,是否有相互拮抗或協同的作用,影響肺部表皮細胞或纖維母細胞的命運。以A549肺部表皮細胞為模型,觀察到IFN-g可藉由提升細胞表面Fas的表現量,而使細胞對Fas傳遞的細胞凋亡訊息更敏感。若將細胞以 IFN-g培養一段時間先提升Fas表現,再給予Fas訊息的話,則可觀測到表皮細胞大量凋亡。而TGFb1可以降低細胞表現Fas的量,抵消 IFN-g提升細胞對Fas所調控凋亡作用的敏感性。然而在纖維母細胞方面,我們以HFL-1細胞株為模型,可看到此兩種細胞激素對Fas表現量的調控與表皮細胞相同,但Fas的表現與否似乎不太影響細胞對Fas傳遞細胞凋亡訊息的敏感性。但若以a-型平滑肌蛋白(a-smooth muscle actin)的表現量作為細胞分化的指標,可看到 IFN-g或 Fas訊息都可降低其表現量, 但 TGFb1可抵消 IFN-g及Fas訊息的抑制作用。細胞先以 IFN-g培養一段時間,可看到 TGFb1增進纖維母細胞a-型平滑肌蛋白表現的情形被Fas訊息所抑制。總括而言,我們觀察到 IFN-g及TGFb1在肺部表皮細胞及纖維母細胞上都可調節Fas的表現量,且扮演著相互拮抗的角色。而Fas訊息的活化可引發肺部表皮細胞凋亡,同時抑制肺部纖維母細胞的活化。根據這些試管內的結果,我們認為 IFN-g及 TGFb1參與SARS肺部病變,可能經由下列方式:在SARS的早期病毒引發大量的 IFN-g及免疫細胞的浸潤,使我們相信應該免疫細胞的Fas ligand提供細胞Fas的訊息。 IFN-g增強Fas的表現,使表皮細胞經由細胞凋亡造成傷害, TGFb1雖然可減緩此現象,但卻效用有限。 IFN-g也可藉由提升纖維母細胞Fas 的表現量,使纖維母細胞經由Fas 的訊息抑制細胞活化, 在疾病後期,浸潤細胞減少,也使Fas的抑制作用減緩, TGFb1的表現量仍高, 纖維母細胞持續受到活化,可能造成纖維化。

      Severe acute respiratory syndrome (SARS) is a new emerging disease caused by SARS-associated coronavirus (SARS-CoV). After infection, patients may develop acute lung injury, which sometimes progresses to pulmonary fibrosis. Analysis of SARS patients’ early stage and convalescent sera revealed the presence of a IFN-g related cytokine storm. This observation, together with the description of persistent acute lung injury after a drop in viral load, suggests that pulmonary damage in SARS patients may be the result of an immunopathological effect. Many reports indicate that IFN-g and TGFb1, which were detected in SARS patients’ sera, could mediate epithelial apoptosis or fibroblast activation. Thus we are interested in the effect of these two cytokines on lung epithelial or fibroblast and how they interact by antagonism or synergism. We found that IFN-g could enhance Fas-mediated apoptosis in A549 lung epithelial cells through the increase of the Fas expression. On the contrary, TGFb1 could partially block IFN-g-enhanced Fas-mediated apoptosis through the decrease of the Fas expression. The effect of these two cytokines on the Fas expression of the HFL-1 human lung fibroblasts were similiar, but without affecting the sensitivity to Fas-mediated apoptosis. Furthemore, IFN-g and Fas activation could downregulate a–smooth muscle actin (a fibroblast differentiation and activation marker) expression, but TGFb1 could counteract this effect. Fibroblasts after priming with IFN-g became more sensitive to Fas-mediated a-smooth muscle actin inhibition. We conclude that IFN-g and TGFb1 could antagonisticly regulate Fas expression in both human lung epithelial cells and fibroblasts, and indirectly regulate Fas-mediated apoptosis or a–smooth muscle actin expression. In SARS, the immune cells that infiltrate to the lungs after SARS-CoV infection may provide a source of Fas ligand. The dominant IFN-g expression could cause lung epithelial cells damage through Fas-mediated apoptosis. TGFb1 could counteract this effect in a different extent. However, in the late stage as Fas ligand expression and IFN-g level decreased, TGFb1 would enhance the fibroblast activation. Together with the damaged epithelial cells, pulmonary fibrosis might develop.

    中文摘要…………………………………………………I 英文摘要…………………………………………………II 致謝………………………………………………………III 目錄………………………………………………………IV 圖目錄……………………………………………………VI 符號………………………………………………………VI 緒論………………………………………………………1 材料方法…………………………………………………6 (一)細胞激素,抗體…………………………………6 (二)細胞株背景資料…………………………………7 (三)細胞的培養………………………………………7 (四)流式細胞儀(flow cytometry)的應用………9 (4.1)細胞表面分子的染色及分析………………9 (4.2)細胞內分子含量的分析……………………10 (4.3)進行DNA染色以分析細胞週期或細胞凋亡…10 (4.4)流式細胞儀數據的分析……………………11 (五)西方轉漬法(Western blot)…………………11 (5.1)細胞蛋白的收取……………………………12 (5.2)蛋白質的定量………………………………12 (5.3)備製聚丙烯基胺膠體………………………12 (5.4)進行電泳……………………………………13 (5.5)蛋白質的轉印………………………………13 (5.6)轉印膜之免疫染色.………………………14 (5.7)壓片、沖片或呈色.………………………14 (5.8) 抗體脫附……………………………………14 結果 (一)IFN-g增加A549細胞對IFN-g及anti-Fas所引起細胞凋亡之感受性……………………………………16 (二)TGFb1可降低A549細胞對IFN-g引發對Fas調控的細胞凋亡的敏感性………………………………………16 (三)TGFb1可降低A549細胞表面Fas的表現量……17 (四)TGFb1可活化A549細胞內的smad訊息…………17 (五)TGFb1 減低A549細胞對Fas誘導細胞凋亡的敏感性與p38的活化無關…...18 (六) IFN-g及 TGFb1對肺部纖維母細胞的影響…18 (七) 纖維母細胞可抵禦Fas所調控的細胞凋亡…19 (八) IFN-g、TGFb1及Fas的訊息對纖維母細胞分化的影響………………………………………………… 19 討論………………………………………………………21 總結………………………………………………………27 參考資料…………………………………………………28 附錄………………………………………………………34 圖表………………………………………………………39 自述………………………………………………………56

    Arsalane K, Dubois CM, Muanza T, et al., 1997. Transforming growth factor- b1 is a potent inhibitor of glutathione synthesis in the lung epithelial cell line A549:transcriptional effect on the GSH ratelimiting enzyme g -glutamylcysteine synthetase.Am. J. Respir. Cell Mol. Biol. 17:599–607.

    Balkwill FR and Bokhon'ko AI. 1984. Differential effects of pure human alpha and gamma interferons on fibroblast cell growth and the cell cycle. Exp Cell Res. 155(1):190-7.

    Beijing Group of National Research Project for SARS. 2003. Dynamic changes in blood cytokine levels as clinical indicators in severe acute respiratory syndrome. Chin Med J (Engl). 116(9):1283-7.

    Chang YJ, Liu CY, Chiang BL, Chao YC, Chen CC. 2004. Induction of IL-8 release in lung cells via activator protein-1 by recombinant baculovirus displaying severe acute respiratory syndrome-coronavirus spike proteins: identification of two functional regions. J Immunol. 173(12):7602-14.

    Chen JH, Chang YW, Yao CW, et al., 2004. Plasma proteome of severe acute respiratory syndrome analyzed by two-dimensional gel electrophoresis and mass spectrometry.Proc Natl Acad Sci U S A. 101(49):17039-44.

    Cheung CY, Poon LL, Ng IH, et al., 2005. Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis. J Virol. 79(12):7819-26.

    Chow KC, Hsiao CH, Lin TY, Chen CL, Chiou SH, 2004. Detection of severe acute respiratory syndrome-associated coronavirus in pneumocytes of the lung. Am J Clin Pathol. 121(4):574-80.

    Dahl H, Linde A, Strannegard O, 2004. In vitro inhibition of SARS virus replication by human interferons. Scand J Infect Dis. 36(11-12):829-31.

    Glass WG, Subbarao K, Murphy B, Murphy PM. 2004. Mechanisms of host defense following severe acute respiratory syndrome-coronavirus (SARS-CoV) pulmonary infection of mice. J Immunol. 173(6):4030-9.

    Grande JP. 1997. Role of transforming growth factor-b in tissue injury and repair.
    Proc. Soc. Exp. Biol. Med. 214:27–40

    Gu L, Zhu YJ, Guo ZJ, Xu XX, Xu WB. 2004. Effect of IFN-gamma and dexamethasone on TGF-beta1-induced human fetal lung fibroblast-myofibroblast differentiation. Acta Pharmacol Sin. 25(11):1479-88.

    Haagmans BL, Kuiken T, Martina BE et al., 2004. Pegylated interferon-alpha protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nat Med. 10(3):290-3.

    Hagimoto N, Kuwano K, Inoshima I,et al. 2002. TGF-b1 as an enhancer of
    Fas-mediated apoptosis of lung epithelial cells. J. Immunol. 168:6470–78

    Harvat BL, Jetten AM. 1996. Gamma-interferon induces an irreversible growth arrest in mid-G1 in mammary epithelial cells which correlates with a block in hyperphosphorylation of retinoblastoma. Cell Growth Differ. 7(3):289-300.

    Honore I, Nunes H, Groussard O et al., 2003. Acute respiratory failure after interferon-gamma therapy of end-stage pulmonary fibrosis. Am J Respir Crit Care Med. 167(7):953-7.

    Huang KJ, Su IJ, Theron M, Wu YC, Lai SK, Liu CC, Lei HY. 2005. An interferon-gamma-related cytokine storm in SARS patients. J Med Virol. 75(2):185-94.

    Ip WK, Chan KH, Law HK, Tso GH, Kong EK, et al., 2005. Mannose-binding lectin in severe acute respiratory syndrome coronavirus infection. J Infect Dis. 191(10):1697-704.

    Jiang Y, Xu J, Zhou C, Wu Z, Zhong S, Liu J, Luo W, Chen T, Qin Q, Deng P. 2005. Characterization of cytokine/chemokine profiles of severe acute respiratory syndrome. Am J Respir Crit Care Med. 171(8):850-7.

    Jin H, Xiao C, Chen Z, Kang Y, Ma Y, Zhu K, Xie Q, Tu Y, Yu Y, Wang B., 2005, Induction of Th1 type response by DNA vaccinations with N, M, and E genes against SARS-CoV in mice. Biochem Biophys Res Commun. 328(4):979-86.

    Kasai H, Allen JT, Mason RM, Kamimura T, Zhang Z. 2005. TGF-beta1 induces human alveolar epithelial to mesenchymal cell transition (EMT). Respir Res. 6(1):56 (In press).

    Kim KB, Choi YH, Kim IK et al. 2002. Potentiation of Fas- and TRAIL-mediated apoptosis by IFN-gamma in A549 lung epithelial cells: enhancement of caspase-8 expression through IFN-response element. Cytokine.20(6):283-8.

    Lau YL, Peiris JM. 2005. Pathogenesis of severe acute respiratory syndrome. Curr Opin Immunol. 17(4):404-10.

    Law HK, Cheung CY, Ng HY et al., 2005. Chemokine upregulation in SARS coronavirus infected human monocyte derived dendritic cells. Blood. Epub ahead of print.

    Matute-Bello G, Liles WC, Steinberg KP, et al., 1999. Soluble Fas ligand induces epithelial cell apoptosis in humans with acute lung injury (ARDS). J Immunol., 163(4):2217-25.

    Ng LF, Hibberd ML, Ooi EE, Tang KF et al., 2004. A human in vitro model system for investigating genome-wide host responses to SARS coronavirus infection. BMC Infect Dis., 4(1):34.

    Nicholls JM, Poon LL, Lee KC et al., 2003. Lung pathology of fatal severe acute respiratory syndrome. Lancet. 361(9371):1773-8.

    Ning W, Song R, Li C, Park E, Mohsenin A, Choi AM, Choi ME. 2002. TGF-beta1 stimulates HO-1 via the p38 mitogen-activated protein kinase in A549 pulmonary epithelial cells. Am J Physiol Lung Cell Mol Physiol. 283(5):L1094-102.

    Okada M, Takemoto Y, Okuno Y, Hashimoto S et al., 2005. The development of vaccines against SARS corona virus in mice and SCID-PBL/hu mice. Vaccine. 23(17-18):2269-72.

    Park SM, Kim S, Choi JS, Hur DY, Lee WJ, Lee MS, Choe J, Lee TH. 2005. TGF-beta inhibits Fas-mediated apoptosis of a follicular dendritic cell line by down-regulating the expression of Fas and caspase-8: counteracting role of TGF-beta on TNF sensitization of Fas-mediated apoptosis. J Immunol. 174(10):6169-75.

    Peiris JS, Chu CM, Cheng VC, Chan KS, Hung IF et al., 2003. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 361: 767–772.

    Reghunathan R, Jayapal M, Hsu LY, Chng HH, Tai D, Leung BP, Melendez AJ. 2005. Expression profile of immune response genes in patients with Severe Acute Respiratory Syndrome. BMC Immunol. 6(1):2.

    Sanchez-Capelo A, 2005, Dual role for TGF-beta1 in apoptosis. Cytokine Growth Factor Rev. 16(1):15-34.

    Schlapbach R, Spanaus KS, Malipiero U, Lens S, Tasinato A, Tschopp J, Fontana A. 2000. TGF-beta induces the expression of the FLICE-inhibitory protein and inhibits Fas-mediated apoptosis of microglia. Eur J Immunol. 30(12):3680-8.

    Serini G, Bochaton-Piallat ML, Ropraz P, et al. 1998. The fibronectin domain ED-A
    is crucial for myofibroblastic phenotype induction by transforming growth factor-
    b1. J. Cell Biol. 142:873–81.

    Souto JT, Aliberti JC, Campanelli AP, et al. 2003. Chemokine production and leukocyte recruitment to the lungs of Paracoccidioides brasiliensis-infected mice is modulated by interferon-gamma. Am J Pathol. 163(2):583-90.

    Striz I, Mio T, Adachi Y, Carnevali S. et al. 2000. Effects of interferons alpha and gamma on cytokine production and phenotypic pattern of human bronchial epithelial cells. Int J Immunopharmacol. 22(8):573-85.

    Surjit M, Liu B, Jameel S, Chow VT, Lal SK. 2004. The SARS coronavirus nucleocapsid protein induces actin reorganization and apoptosis in COS-1 cells in the absence of growth factors. Biochem J. 383(Pt 1):13-8.

    Tan YJ, Fiel ding BC, Goh PY, Shen S, Tan TH, Lim SG, Hong W. 2004. Overexpression of 7a, a protein specifically encoded by the severe acute respiratory syndrome coronavirus, induces apoptosis via a caspase-dependent pathway. J Virol. 78(24):14043-7.

    Tanaka T, Yoshimi M, Maeyama T, Hagimoto N, Kuwano K, Hara N. 2002. Resistance to Fas-mediated apoptosis in human lung fibroblast. Eur Respir J. 20(2):359-68.

    Thannickal VJ, Toews GB, White ES, Lynch JP 3rd, Martinez FJ. 2004. Mechanisms of pulmonary fibrosis. Annu Rev Med. 55:395-417.

    Tseng CT, Perrone LA, Zhu H, Makino S, Peters CJ. 2005. Severe acute respiratory syndrome and the innate immune responses: modulation of effector cell function without productive infection. J Immunol. 174(12):7977-85.

    Undevia NS, Dorscheid DR, Marroquin BA, Gugliotta WL, Tse R, White SR., 2004. Smad and p38-MAPK signaling mediates apoptotic effects of transforming growth factor-beta1 in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol. 287(3):L515-24.

    Wahl SM, Hunt DA, Wakefield LM,et al. 1987. Transforming growth factor
    type beta induces monocyte chemotaxisand growth factor production. Proc. Natl.
    Acad. Sci. USA. 84:5788–92.

    Wang HC, Shun CT, Hsu SM, Kuo SH, Luh KT, Yang PC. 2002. Fas/Fas ligand pathway is involved in the resolution of type II pneumocyte hyperplasia after acute lung injury: evidence from a rat model. Crit Care Med. 30(7):1528-34.

    Wang C, Pang BS; National Research Project for SARS, Beijing Group. 2003. Dynamic changes and the meanings of blood cytokines in severe acute respiratory syndrome. Zhonghua Jie He He Hu Xi Za Zhi. 26(10):586-9.

    Wang B, Chen H, Jiang X, Zhang M, Wan T, Li N, Zhou X, Wu Y, Yang F, Yu Y, Wang X, Yang R, Cao X. 2004. Identification of an HLA-A*0201-restricted CD8+ T-cell epitope SSp-1 of SARS-CoV spike protein. Blood. 104(1):200-6.

    Wang CH, Liu CY, Wan YL et al., 2005. Persistence of lung inflammation and lung cytokines with high-resolution CT abnormalities during recovery from SARS. Respir Res. 6(1):42.

    Wen LP, Madani K, Fahrni JA, Duncan SR, Rosen GD. 1997. Dexamethasone inhibits lung epithelial cell apoptosis induced by IFN-gamma and Fas. Am J Physiol. 273(5 Pt 1):L921-9.

    Wen FQ, Liu X, Kobayashi T, Abe S et al., 2004. Interferon-gamma inhibits transforming growth factor-beta production in human airway epithelial cells by targeting Smads. Am J Respir Cell Mol Biol. 30(6):816-22.

    Wong CK, Lam CW, Wu AK et al., 2004. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol. 136(1):95-103.

    Wynn TA. 2004. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol. 4(8):583-94.

    Yilla M, Harcourt BH, Hickman CJ, et al., 2005. SARS-coronavirus replication in human peripheral monocytes/macrophages. Virus Res. 107(1):93-101.

    Ziesche R, Hofbauer E,Wittmann K, et al., 1999. A preliminary study of long-term treatment with interferon g-1b and lowdose prednisolone in patients with idiopathic
    pulmonary fibrosis. N. Engl. J. Med. 341:1264–69

    下載圖示 校內:立即公開
    校外:2005-08-04公開
    QR CODE