簡易檢索 / 詳目顯示

研究生: 鍾采凌
Chung, Tsai-Ling
論文名稱: 利用三維電熱耦合之有限元素法探討覆晶封裝之錫球接點受電遷移影響
The Solder Joint of Flip Chip Package due to Electromigration Effect by 3-D ANSYS with Electrothermal Coupling Method
指導教授: 陳榮盛
Chen, Rong-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 181
中文關鍵詞: 覆晶封裝(Flip-chip Packages)電遷移效應銲錫接點凸塊下冶金層(UBM)電熱耦合之電性分析
外文關鍵詞: Flip-chip Packages, Electromigration effect, Solder bump, Under Bump Metallurgy(UBM), Electrothermal coupling analysis
相關次數: 點閱:133下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文係針對覆晶封裝(Flip-chip Packages)探討銲錫接點失效,其主要方法係採用含電熱耦合效應之電性分析,並進一步改變輸入電流值、導線層材料及UBM厚度,分析其孔洞生成的位置與變化。因此,首先使用有限元素分析軟體ANSYS進行模擬銲錫接點的電性分析,觀察其內部電流密度集中區域以及溫度分佈狀況。接著改變輸入電流值、導線層材料及UBM厚度,並分析三種變因對模型內部之電流密度、溫度與焦耳熱的影響程度。
    由電流密度與焦耳熱最大值可知關鍵破壞處皆在覆晶銲錫接點之陰極處附近,即孔洞會最先在此處形成,然後隨著時間增加而沿UBM與銲錫的接面擴展,最後造成銲點失效。接著以不同輸入電流值、導線層材料及UBM厚度進行分析,可知當輸入電流愈大,關鍵破壞處之電流密度愈大,溫度也愈高,所產生之焦耳熱也愈大。將模型之鋁墊與鋁導線部分更換為銅材料,關鍵破壞處的電流密度會變小,溫度也降低許多,所產生的焦耳熱也較小。當UBM厚度為0.45μm時,關鍵破壞處之電流密度與焦耳熱最大值皆較UBM厚度為0.5μm與0.55μm大。當輸入電流為40mA且UBM厚度為0.5μm,UBM上靠近陰極彎角處之電流密度為1.56x106A/cm2,將模型之鋁墊與鋁導線部分更換為銅材料後,此處之電流密度降低為1.27x106A/cm2,較原先數據小約18.6%。然而當輸入電流為40mA且導線層材料仍為鋁,將UBM厚度由原本的0.5μm分別改為0.45μm以及0.55μm,可發現UBM上靠近陰極彎角處之電流密度改變分別為增加61.5%以及幾乎不變。

    By focusing on a Flip-chip Packages, this study aims to discuss the failure behavior of the solder joint. An advanced electro-thermo coupling model is adopted. Furthermore, the input current value, the material compositions of the conductor layer and the thickness of the UBM are changed to analyze the location and its change of the voids. Therefore, the finite element analysis software ANSYS is applied to simulate and analyze the solder joints under electromigration. Subsequently, the current density distribution and the temperature distribution are investigated. Finally, the the input current value, the material compositions of the conductor layer and the thickness of the UBM are changed to investigate their effects on the current density, temperature and Joule heating in the model.

    The failure of a flip chip solder joint is always at cathode chip side where the voids appear initially based on the maximum value of current density and Joule heating. Accordingly, the void consistently expand along the interface of UBM and solder bump, and eventually leads to the failure of the solder joint. Then, the input current value, the material compositions of the conductor layer and the thickness of the UBM are changed to analyze the change of the current density distribution and the temperature distribution. It shows that all the current density, temperature and Joule heating increase at the current crowding spots when current input increases. Once the material composition of the conductor layer is changed to Cu, all the current density, temperature and Joule heating decrease at the current crowding spots. It also shows that current density and Joule heating at the current crowding spots with the thickness of the UBM is 0.45μm is larger than that with the thickness of 0.5μm or 0.55μm. For example, when current input is 40mA and the thickness of the UBM is 0.5μm , the current density at the current crowding spot on the UBM is 1.56x106A/cm2. Once the material compositions of the conductor layer is changed to Cu, the current density at the current crowding spots on the UBM is 1.27x106A/cm2. It is about 18.6% lower than before. However, when current input is 40mA and the material compositions of the conductor layer is still Al , the current density at the current crowding spot on the UBM becomes 61.5% increasing and is almost no change with the thickness of the UBM from the original 0.5μm to 0.45μm and 0.55μm respectively.

    中文摘要 I Abstract III 誌謝 VIII 符號表 IX 目錄 VII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1-1前言 1 1-2研究動機與目的 1 1-3文獻回顧 2 1-4研究方法 6 1-5章節提要 7 第二章 理論基礎 8 2-1 研究主題 8 2-2 電遷移效應(Electromigration effect) 9 2-3 電熱耦合分析 11 2-3-1 電熱耦合分析簡介 11 2-3-2 模擬分析程序 12 2-4 電熱理論 15 2-4-1 電阻值計算 15 2-4-2 電流及電壓值計算 16 2-4-3 金屬材料之電阻與溫度關係曲線[16] 16 2-4-4 熱傳導(Heat conduction)理論 17 2-4-5 熱對流(Heat convection)理論 18 2-4-6 熱輻射(Heat radiation)理論 18 2-4-7 熱能平衡(Thermal energy balance)理論 19 2-4-8 電熱耦合理論[25] 20 第三章 覆晶封裝體模型評估 28 3-1 覆晶封裝體介紹及失效探討 28 3-2 覆晶封裝體模型之幾何尺寸及材料性質[17] 30 3-3 局部模型之電熱耦合分析 31 3-3-1 覆晶封裝體之電熱耦合分析基本假設 31 3-3-2 電熱耦合分析型態、負載設定及邊界條件 32 3-3-3 模型網格切割 33 3-4 模型之電流密度、溫度與焦耳熱結果分析 34 第四章 輸入電流值及導線層材料之分析與評估 53 4-1 輸入電流值之分析 53 4-1-1 輸入電流值之設定 53 4-1-2 不同輸入電流值之電流密度、溫度與焦耳熱結果分析 53 4-1-3 電流密度、溫度及焦耳熱與輸入電流值之關係 58 4-2 導線層材料之分析 59 4-2-1 導線層材料之設定 59 4-2-2 不同導線層材料之電流密度、溫度與焦耳熱結果分析 60 4-2-3 不同導線層材料電流密度、溫度及焦耳熱與輸入電流值之關係 66 第五章 UBM厚度及導線層材料之分析與評估 103 5-1 UBM厚度之分析 103 5-1-1 UBM厚度之設定 103 5-1-2 不同UBM厚度之電流密度、溫度與焦耳熱結果分析 103 5-1-3 電流密度、溫度及焦耳熱與輸入電流值之關係 110 5-2 導線層材料之分析 111 5-2-1 導線層材料之設定 111 5-2-2 不同導線層材料之電流密度、溫度與焦耳熱結果分析 112 5-2-3 不同導線層材料電流密度、溫度及焦耳熱與輸入電流值之關係 121 第六章 結論與未來展望 172 6-1 結論 172 6-2 未來展望 178 參考文獻 179

    [1]Blech, “Electromigration in Thin Aluminum Films on Titanium Nitride”, Journal of Applied Physics, Vol 47, pp. 1203-1208, April 1976
    [2]T. Kwork, T. Nguyen, P. Ho, and S. Yip, “Proceedings of the 25th IEEE International Reliability Physics Symposium”, San Diego, California, April 7-9, P.130, 1987
    [3]T. Kwork, T. Nguyen, P. Ho, and S. Yip, “Proceedings of the 5th IEEE International VLSI Multilevel Interconnection Conference”, Santa Clara, California, June 13-14, P.252, 1988
    [4]Y.C. Hu , L. Gignac, S.G. Malhotra, R. Rosenberg, and S. Boettcher, “Appl. Phys. Lett.”, 78, P.904, 2001
    [5]T. Y. Lee, K. N. Tu, S. M. Kuo, and D. R. Frear, “ Electromigration of eutectic SnPb solder interconnects for flip chip technology”, Journal of Applied Physics, Vol. 89, pp. 3189-3194, March, 2001
    [6]T. Y. Lee, K. N. Tu, and D. R. Frear, “ Electromigration of eutectic SnPb and SnAg3.8Cu0.7 flip chip solder bumps and under-bump metallization”, Journal of Applied Physics, Vol. 90, pp. 4502-4508, November, 2001
    [7]J. D. Wu, P. J. Zheng, Kelly Lee, C. T. Chiu, and J. J. Lee, “Electromigration Failures of UBM/Bump Systems of Flip-Chip Packages”, Proceedings of the 52nd Electronic Components and Technology Conference, pp. 452-457, May, 2002
    [8]J.W. Nah, and K.W. Paik, “J. Appl. Phys.”, 94, 7560, 2003
    [9]Jae-Woong Nah, Jong Hoon Kim, Hyuck Mo Lee, Kyung-Wook Paik, “Acta Materialia”, 52,129, 2004
    [10]Lingyun Zhang, Shengquan Ou, Joanne Huang, and K. N. Tu, “J. Appl. Phys. 88”, 012106, 2006
    [11]Y.-S. Lai and C.-L. Kao, “Microelectronics Reliability 46”, 1357–1368, 2006
    [12]Yi-Shao Lai and Chin-Li Kao, “Characteristics of current crowding in flip-chip solder bumps”, Microelectronics Reliability 46, 915–922, 2006
    [13]胡應強、王祥文、高振宏,“電遷移效應對錫導線之微結構研究”,中央大學,IMAPS2006
    [14]JEDEC STANDARD, “JEDEC-JEP154”
    [15]劉立晟,“覆晶錫球陣列無鉛錫球接點在電子遷移測試中孔洞生成及失效機制”,國立中山大學機械與機電工程學系研究所博士論文,2009
    [16]呂杰融,“無鉛銲錫SAC405合金電性分析與熱電結構耦合效應”,義守大學機械與自動化工程學系研究所碩士論文,2010
    [17]陳欣楷,“以數值分析來研究覆晶銲點之電遷移現象”,國立中央大學化學工程與材料工程研究所碩士論文,2007
    [18]Gordon N. Ellison, “Thermal Computations-for Electronic Equipment”, Robert E. Krieger Publishing Company, Malabar, Florida, 1989
    [19]C. Y. Chang and S. M. Sze, “ULSI Technology”, the McGRAW-HILL, P. 663, 1996
    [20]K. N. Tu and K. Zeng, “ Reliability Issues of Pb-free Solder Joints in Electronic Packaging Technology”, Proceedings of the 52nd Electronic Components and Technology Conference, pp. 1194-1200, 2002
    [21]冀皇光, 黃柏文, 陳鴻雄, “ANSYS電腦輔助工程分析”, P2-2, 2002
    [22]H. Guckel, J. Klein, T. Christenson, K. Shrobis, M. Laudon, E. G. Lovell, “Thermo-magnetic Metal Flexure Actuators”, Proc., Solid-State Sensor and Actuator Workshop (Hilton Head '92), pp.73-75, June 1992
    [23]Frank P. Incropera, David P. DeWitt, “Fundamentals of Heat and Mass Transfer”, Forth Edition, John Wiley&Sons, Inc., 1996
    [24]ANSYS Menu, “Thermal-Electric Element”, Ch11. Table of Contents Theory Reference 5.7, March 2001
    [25]Elena E. Antonova, David C. Looman, “Finite Elements for Thermoelectric Device Analysis in ANSYS”, ANSYS Inc., Southpointe, Technology Drive, Canonsburg, PA 15317, USA

    無法下載圖示 校內:2017-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE