簡易檢索 / 詳目顯示

研究生: 張玉孚
YU-FU-CHANG,
論文名稱: 新穎銅硒化合物的合成與光學性質
Synthesis and Optical Property of a New Copper Selenide
指導教授: 許桂芳
Hsu, Kuei-Fang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 58
中文關鍵詞: 太陽能電池微光激發光光譜缺陷
外文關鍵詞: metal chalcogenides, deficiency, photoluminescence
相關次數: 點閱:41下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以助熔長晶法,合成出新穎結構鋇銅硒化合物。化合物以助熔長晶法,在高溫下合成晶體。結構利用 MSe3、MSe4 (M=Cu, In)四面體,以共用 Se 相互連接形成三維結構骨架。
    經由差示熱分析儀鑑定化合物的熔點為735 oC,再結晶點為700 oC。紫外光–可見–近紅外光光譜儀測得此化合物的直接能隙約為1.27 eV。由微光激發光譜儀發現此化合物有 PL 訊號。

    The new quaternary metal chalcogenides copper selenide has been synthesized using KBr flux at 800 ⁰C. This compound shows a three-dimensional (3D) structure composed of CuSe4 tetrahedra, InSe4 tetrahedra and CuSe3 trigonal. There is complicated structure such as disorder of Cu/In and deficiency of Cu sites in this compound. Otherwise, we find that this compound shows a PL emission, we expect to be a good practice in solar cell in future.

    摘要 I Extended abstract II 誌謝 VI 目錄 VII 表目錄 IX 圖目錄 X 第一章 緒論 1 第二章 實驗 10 2–1 單晶合成 (Synthesis of Single Crystal) 10 2–2 單晶結構X光繞射分析 (Single Crystal X–ray Diffraction Analysis) 11 2–3 能量散佈光譜儀元素分析 (Energy Dispersive Spectrometer, EDS) 13 2–4 粉末X光繞射分析 (Powder X–ray Diffraction Analysis) 15 2–5 差式熱分析 (Differential Thermal Analysis, DTA) 15 2–6 紫外光–可見–近紅外光光譜儀分析 (UV–vis–NIR Reflection Spectrometer ) 16 2–7 霍爾效應分析(Hall Effect Analysis) 17 2–8 微光激發光譜儀PL分析 17 第三章 結果與討論 18 3–1 晶體結構 18 3–2 純相合成 29 3–3 DTA鑑定 31 3–4 能隙鑑定 34 3–5 光激發螢光光譜 37 3–6 霍爾效應 40 3–7 太陽能電池 42 第四章 結論 44 第五章 參考文獻 45 第六章 附錄 48

    [1] Sven Rühle et al. Solar Energy. 2016, 130, 139-147.

    [2] Mikio Taguchi et al. IEEE Journal of Photovoltaics, 2014, 4, 96-99.

    [3] Mesa, F et al. Thin Solid Films, 2010, 518, 1764-1766.

    [4] Sung-Min Lee et al. ACS Nano, 2015, 9, 10356–10365.

    [5] ASTM G173-03 Reference Spectra Derived from SMARTS v.2.9.2

    [6] H. L. Zhang et al. Scientific World Journal. 2014, 404913, 2.

    [7] Sho Shirakata et al. Jpn. J. Appl. Phys. 2011, 50, 02.

    [8] Anlian Pan et al. J. Am. Chem. Soc., 2005, 127, 15692–15693.

    [9] Yong-Kwang Jeong et al. J. Am.Chem.Soc., 2017, 139, 15088.

    [10] Sho Shirakata. Phys. Status Solidi B, 2015, 252, 1211–1218.

    [11] Sigurd Wagner et al. Appl. Phys. Lett. 1974, 25, 434.

    [12] Neumann, H et al. Solar cell. 1986, 16, 317-333.

    [13] Belhadj, M.et al. Phys. Stat. Sol. 2004, 241, 2516-2528.

    [14] Zhang, S et al. Phys. Rev. B. 1998, 57, 9642-9656.

    [15] Fearheiley, M. et al. Solar Cells, 1986, 16, 91-100.

    [16] Jean-François Guillemoles et al. Adv. Mater. 1999, 11, 957-961.

    [17] Du, Jun et al. J. Am. Chem. Soc., 2016, 138, 4201–4209.

    [18] Jackson, P et al. Phys. Status Solidi RRL, 2016, 10, 583−586.

    [19] Marianna Kemell et al, Crit. Rev. Solid State Mater. Sci, 2005, 30,1-31.

    [20] Wang, W.et al. Adv. Energy Mater. 2014, 4, 1301465.

    [21] Donghyeop Shin et al. Chem. Mater. 2016, 28, 4771−4780.

    [22] Teske, C. L. et al. Anorg. Allg. Chem. 1976, 426, 281−287.

    [23] Teske, C. L. et al. Z. Anorg. Allg. Chem. 1976, 419, 67−76.

    [24] Chen, S. et al. Appl. Phys. Lett. 2010, 96, 021902.

    [25] Walsh, A. et al. Adv. Energy Mater. 2012, 2, 400−409.

    [26] Han, D. et al. Phys. Rev. 2013, 87, 155206.

    [27] Romero, M. J. et al. Phys. Rev. 2011, 84, 165324.

    [28] Hong, F et al. Phys. Chem. Chem. Phys. 2016, 18, 4828−4834.

    [29] Malkeshkumar Patel et al. Nanoscale, 2016, 8, 2293–2303.

    [30] Jeremy K. Burdett et al. Inorg.Chem., 1992, 31, 1758–1762.

    [31] Paul J. Brimmer et al. Applied Spectroscopy, 1988, 42, 242-247.

    [32] Assoud, A et al. Chem. Mater. 2006, 18, 3866.

    [33] Cui, Y et al. Inorg. Chem. 2007, 46, 1215-1221.

    [34] Mayasree O et al. Inorg.Chem. 2010, 49, 6518-6524.

    [35] Kuropatwa B. A et al. Inorg. Chem. 2012, 51, 5299-5304.

    [36] Mayasree O et al. Inorg. Chem. 2011, 4037-4042.

    [37] Mayasree O et al. Inorg. Chem. 2011, 50, 4580-4585.

    [38] Kuropatwa B. A et al. Chem. Mater. 2009, 21, 88-93.

    [39] Mehrotra P. K et al. Inorg. Chem. 1978, 17, 2187-2189.

    [40] Merz Jr. K. M et al. Inorg. Chem. 1988, 17, 2120-2127.

    [41] Pyykkö P et al. Chem. Rev. 1997, 97, 597-636.

    [42] Mayasree O et al. Chem. Rev. 2012, 256, 1377-1383.

    [43] Jean-François Guillemoles et al. J. Phys. Chem. B, 2000, 104, 4849–4862.

    [44] B. Dimmler et al. Prog. Photovolt. Res. Appl. 1996, 4, 425.

    [45] Niranjan Biswal et al. Int J Hydrogen Energy. 2011, 36, 13452-13460.

    [46] Wenqing Fan et al. J. Phys. Chem. C, 2011, 115, 10694–10701.

    [47] Yu-Ting Hsu et al. Proc. of SPIE. 2012, 8470, 6.

    [48] Gokmen, T. et al. Appl. Phys. Lett. 2013, 103, 103506.

    [49] M. Sotoodeh et al, JOURNAL OF APPLIED PHYSICS, 2000, 87, 2893-2894.

    無法下載圖示 校內:2023-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE