| 研究生: |
張玉孚 YU-FU-CHANG, |
|---|---|
| 論文名稱: |
新穎銅硒化合物的合成與光學性質 Synthesis and Optical Property of a New Copper Selenide |
| 指導教授: |
許桂芳
Hsu, Kuei-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 太陽能電池 、微光激發光光譜 、缺陷 |
| 外文關鍵詞: | metal chalcogenides, deficiency, photoluminescence |
| 相關次數: | 點閱:41 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以助熔長晶法,合成出新穎結構鋇銅硒化合物。化合物以助熔長晶法,在高溫下合成晶體。結構利用 MSe3、MSe4 (M=Cu, In)四面體,以共用 Se 相互連接形成三維結構骨架。
經由差示熱分析儀鑑定化合物的熔點為735 oC,再結晶點為700 oC。紫外光–可見–近紅外光光譜儀測得此化合物的直接能隙約為1.27 eV。由微光激發光譜儀發現此化合物有 PL 訊號。
The new quaternary metal chalcogenides copper selenide has been synthesized using KBr flux at 800 ⁰C. This compound shows a three-dimensional (3D) structure composed of CuSe4 tetrahedra, InSe4 tetrahedra and CuSe3 trigonal. There is complicated structure such as disorder of Cu/In and deficiency of Cu sites in this compound. Otherwise, we find that this compound shows a PL emission, we expect to be a good practice in solar cell in future.
[1] Sven Rühle et al. Solar Energy. 2016, 130, 139-147.
[2] Mikio Taguchi et al. IEEE Journal of Photovoltaics, 2014, 4, 96-99.
[3] Mesa, F et al. Thin Solid Films, 2010, 518, 1764-1766.
[4] Sung-Min Lee et al. ACS Nano, 2015, 9, 10356–10365.
[5] ASTM G173-03 Reference Spectra Derived from SMARTS v.2.9.2
[6] H. L. Zhang et al. Scientific World Journal. 2014, 404913, 2.
[7] Sho Shirakata et al. Jpn. J. Appl. Phys. 2011, 50, 02.
[8] Anlian Pan et al. J. Am. Chem. Soc., 2005, 127, 15692–15693.
[9] Yong-Kwang Jeong et al. J. Am.Chem.Soc., 2017, 139, 15088.
[10] Sho Shirakata. Phys. Status Solidi B, 2015, 252, 1211–1218.
[11] Sigurd Wagner et al. Appl. Phys. Lett. 1974, 25, 434.
[12] Neumann, H et al. Solar cell. 1986, 16, 317-333.
[13] Belhadj, M.et al. Phys. Stat. Sol. 2004, 241, 2516-2528.
[14] Zhang, S et al. Phys. Rev. B. 1998, 57, 9642-9656.
[15] Fearheiley, M. et al. Solar Cells, 1986, 16, 91-100.
[16] Jean-François Guillemoles et al. Adv. Mater. 1999, 11, 957-961.
[17] Du, Jun et al. J. Am. Chem. Soc., 2016, 138, 4201–4209.
[18] Jackson, P et al. Phys. Status Solidi RRL, 2016, 10, 583−586.
[19] Marianna Kemell et al, Crit. Rev. Solid State Mater. Sci, 2005, 30,1-31.
[20] Wang, W.et al. Adv. Energy Mater. 2014, 4, 1301465.
[21] Donghyeop Shin et al. Chem. Mater. 2016, 28, 4771−4780.
[22] Teske, C. L. et al. Anorg. Allg. Chem. 1976, 426, 281−287.
[23] Teske, C. L. et al. Z. Anorg. Allg. Chem. 1976, 419, 67−76.
[24] Chen, S. et al. Appl. Phys. Lett. 2010, 96, 021902.
[25] Walsh, A. et al. Adv. Energy Mater. 2012, 2, 400−409.
[26] Han, D. et al. Phys. Rev. 2013, 87, 155206.
[27] Romero, M. J. et al. Phys. Rev. 2011, 84, 165324.
[28] Hong, F et al. Phys. Chem. Chem. Phys. 2016, 18, 4828−4834.
[29] Malkeshkumar Patel et al. Nanoscale, 2016, 8, 2293–2303.
[30] Jeremy K. Burdett et al. Inorg.Chem., 1992, 31, 1758–1762.
[31] Paul J. Brimmer et al. Applied Spectroscopy, 1988, 42, 242-247.
[32] Assoud, A et al. Chem. Mater. 2006, 18, 3866.
[33] Cui, Y et al. Inorg. Chem. 2007, 46, 1215-1221.
[34] Mayasree O et al. Inorg.Chem. 2010, 49, 6518-6524.
[35] Kuropatwa B. A et al. Inorg. Chem. 2012, 51, 5299-5304.
[36] Mayasree O et al. Inorg. Chem. 2011, 4037-4042.
[37] Mayasree O et al. Inorg. Chem. 2011, 50, 4580-4585.
[38] Kuropatwa B. A et al. Chem. Mater. 2009, 21, 88-93.
[39] Mehrotra P. K et al. Inorg. Chem. 1978, 17, 2187-2189.
[40] Merz Jr. K. M et al. Inorg. Chem. 1988, 17, 2120-2127.
[41] Pyykkö P et al. Chem. Rev. 1997, 97, 597-636.
[42] Mayasree O et al. Chem. Rev. 2012, 256, 1377-1383.
[43] Jean-François Guillemoles et al. J. Phys. Chem. B, 2000, 104, 4849–4862.
[44] B. Dimmler et al. Prog. Photovolt. Res. Appl. 1996, 4, 425.
[45] Niranjan Biswal et al. Int J Hydrogen Energy. 2011, 36, 13452-13460.
[46] Wenqing Fan et al. J. Phys. Chem. C, 2011, 115, 10694–10701.
[47] Yu-Ting Hsu et al. Proc. of SPIE. 2012, 8470, 6.
[48] Gokmen, T. et al. Appl. Phys. Lett. 2013, 103, 103506.
[49] M. Sotoodeh et al, JOURNAL OF APPLIED PHYSICS, 2000, 87, 2893-2894.
校內:2023-01-01公開