| 研究生: |
劉晏文 Liu, Yen-Wen |
|---|---|
| 論文名稱: |
以有限元素法探討多晶銅球形壓痕應力-應變方法 On Stress-Strain Method of Polycrystalline Copper from Spherical Indentation Using Finite Element Method |
| 指導教授: |
郭瑞昭
Kuo, Jui-Chao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 壓痕變形 、壓痕應力-應變曲線 、晶體塑性 、有限元素法 |
| 外文關鍵詞: | Indentation deformation, Indentation stress-strain curve, Crystal plasticity, Finite element method |
| 相關次數: | 點閱:115 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自1948年Tabor提出壓痕應變的概念後,許多研究提出壓痕應變的定義並探討拉伸與壓痕應力-應變曲線之關聯性,卻忽略了最直接影響壓痕應力-應變曲線的是接觸深度與接觸半徑。為此,本研究利用有限元素法結合等向塑性與晶體塑性兩種模型模擬多晶銅壓痕變形,透過定義壓痕應力與應變來得到壓痕應力-應變曲線,與拉伸實驗比較。其次討論接觸深度對壓痕應力-應變曲線行為的影響,最後也探討兩種組成律模型對壓痕應力-應變曲線的影響。
壓痕應力-應變曲線的模擬結果顯示,接觸深度影響壓痕曲線的行為主要為壓痕應力的大小。當接觸深度大於壓痕深度(pile-up)時,壓痕塑流曲線將往小應力移動,類似真實應變的Milman應變最接近。接觸深度等於壓痕深度時,最佳應變為在接觸點的應變Ahn應變。當接觸深度小於壓痕深度(sink-in)時,工程應變的Tabor、Johnson、Kalidindi應變更符合拉伸曲線。
等向塑性與晶體塑性兩種模型的模擬結果顯示,晶體塑性模型的壓痕應力-應變曲線高於等向塑性模型。儘管在兩個模型中接觸深度相等,但晶體塑性模型的負載值較高,其可能的原因推測為在晶體塑性模型中,塑性變形僅限於12種組合即12種滑移系統。為了達到相同變形量,需更大的負載來達成,然而這種結果使得晶體塑性模型的行為更符合拉伸實驗曲線。
Indentation stress-strain curves of polycrystalline copper from spherical indentation deformation are simulated using finite element method with isotropic and crystal plasticity model. Effect of contact depth on indentation stress-strain curve is discussed, and the indentation stress-strain curves with two models are compared to the experimental tensile flow curve in order to explore the feasibility of the indentation stress-strain method. The contact depth is inversely proportional to the indentation stress and it can preliminarily determine the best indentation strain. At the indentation stress-strain curves with isotropic and crystal plasticity model, the results of crystal plasticity are always higher than isotropic model. The deviation happens because CP only has 12 slip systems in each element to deform, CP model need to apply a larger load to achieve the same deformation. However, the indentation stress-strain curves with CPFEM agreed with the tensile flow curve.
1. D. Tabor, A simple theory of static and dynamic hardness. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 192: p. 247-274, 1948.
2. H. Hertz, D.E. Jones, and G.A. Schott, Miscellaneous papers. Macmillan and Company, London, New York, 1896.
3. K. Johnson, The correlation of indentation experiments. Journal of the Mechanics and Physics of Solids. 18: p. 115-126, 1970.
4. Y.V. Milman, B. Galanov, and S. Chugunova, Plasticity characteristic obtained through hardness measurement. Acta metallurgica et materialia. 41: p. 2523-2532, 1993.
5. J.H. Ahn and D. Kwon, Derivation of plastic stress–strain relationship from ball indentations: Examination of strain definition and pileup effect. Journal of Materials Research. 16: p. 3170-3178, 2001.
6. S.R. Kalidindi and S. Pathak, Determination of the effective zero-point and the extraction of spherical nanoindentation stress–strain curves. Acta Materialia. 56: p. 3523-3532, 2008.
7. J. Gracio, J. Fernandes, and J. Schmitt, Effect of grain size on substructural evolution and plastic behaviour of copper. Materials Science and Engineering: A. 118: p. 97-105, 1989.
8. A.C. Fischer-Cripps and D. Nicholson, Nanoindentation. Mechanical engineering series. Applied Mechanics Reviews 57: p. B12-B12, 2004.
9. W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research. 7: p. 1564-1583, 1992.
10. G. Cheng, X. Sun, Y. Wang, S.L. Tay, and W. Gao, Nanoindentation study of electrodeposited Ag thin coating: An inverse calculation of anisotropic elastic-plastic properties. Surface and Coatings Technology. 310: p. 43-50, 2017.
11. J.-M. Collin, G. Mauvoisin, and P. Pilvin, Materials characterization by instrumented indentation using two different approaches. Materials & Design. 31: p. 636-640, 2010.
12. M. Beghini, L. Bertini, and V. Fontanari, Evaluation of the stress–strain curve of metallic materials by spherical indentation. International Journal of Solids and Structures. 43: p. 2441-2459, 2006.
13. M.K. Khan, S.V. Hainsworth, M.E. Fitzpatrick, and L. Edwards, A combined experimental and finite element approach for determining mechanical properties of aluminium alloys by nanoindentation. Computational Materials Science. 49: p. 751-760, 2010.
14. L. Meng, P. Breitkopf, B. Raghavan, G. Mauvoisin, O. Bartier, and X. Hernot, On the study of mystical materials identified by indentation on power law and Voce hardening solids. International Journal of Material Forming. 12: p. 587-602, 2018.
15. J. Jiang, A. Fasth, P. Nylén, and W.B. Choi, Microindentation and Inverse Analysis to Characterize Elastic-Plastic Properties for Thermal Sprayed Ti2AlC and NiCoCrAlY. Journal of Thermal Spray Technology. 18: p. 194-200, 2009.
16. L.Y. Huang, K.S. Guan, T. Xu, J.M. Zhang, and Q.Q. Wang, Investigation of the mechanical properties of steel using instrumented indentation test with simulated annealing particle swarm optimization. Theoretical and Applied Fracture Mechanics. 102: p. 116-121, 2019.
17. Y.G. Li, P. Kanouté, M. François, D. Chen, and H.W. Wang, Inverse identification of constitutive parameters with instrumented indentation test considering the normalized loading and unloading P-h curves. International Journal of Solids and Structures. 156-157: p. 163-178, 2019.
18. D.M. De Bono, T. London, M. Baker, and M.J. Whiting, A robust inverse analysis method to estimate the local tensile properties of heterogeneous materials from nano-indentation data. International Journal of Mechanical Sciences. 123: p. 162-176, 2017.
19. G.K. H. Al Baida, C. Langlade,, Development of an improved method for identifying material stress–strain curve using repeated micro-impact testing. Mechanics of Materials. 86: p. 11-20, 2015.
20. C. Moussa, X. Hernot, O. Bartier, G. Delattre, and G. Mauvoisin, Evaluation of the tensile properties of a material through spherical indentation: definition of an average representative strain and a confidence domain. Journal of Materials Science. 49: p. 592-603, 2013.
21. J.E. Campbell, R.P. Thompson, J. Dean, and T.W. Clyne, Comparison between stress-strain plots obtained from indentation plastometry, based on residual indent profiles, and from uniaxial testing. Acta Materialia. 168: p. 87-99, 2019.
22. O. Takakuwa, Y. Mano, and H. Soyama, Increase in the local yield stress near surface of austenitic stainless steel due to invasion by hydrogen. International Journal of Hydrogen Energy. 39: p. 6095-6103, 2014.
23. M. Nishikawa and H. Soyama, Two-step method to evaluate equibiaxial residual stress of metal surface based on micro-indentation tests. Materials & Design. 32: p. 3240-3247, 2011.
24. M. Wang, J. Wu, Y. Hui, Z. Zhang, X. Zhan, and R. Guo, Identification of elastic-plastic properties of metal materials by using the residual imprint of spherical indentation. Materials Science and Engineering: A. 679: p. 143-154, 2017.
25. J. Wu, M. Wang, Y. Hui, Z. Zhang, and H. Fan, Identification of anisotropic plasticity properties of materials using spherical indentation imprint mapping. Materials Science and Engineering: A. 723: p. 269-278, 2018.
26. F. Arizzi and E. Rizzi, Elastoplastic parameter identification by simulation of static and dynamic indentation tests. Modelling and Simulation in Materials Science and Engineering. 22, 2014.
27. O. Iracheta, C.J. Bennett, and W. Sun, Characterization of material property variation across an inertia friction welded CrMoV steel component using the inverse analysis of nanoindentation data. International Journal of Mechanical Sciences. 107: p. 253-263, 2016.
28. G. Bolzon and M. Talassi, An effective inverse analysis tool for parameter identification of anisotropic material models. International Journal of Mechanical Sciences. 77: p. 130-144, 2013.
29. C.K.S. Moy, M. Bocciarelli, S.P. Ringer, and G. Ranzi, Identification of the material properties of Al 2024 alloy by means of inverse analysis and indentation tests. Materials Science and Engineering: A. 529: p. 119-130, 2011.
30. M. Wang, J. Wu, X. Zhan, R. Guo, Y. Hui, and H. Fan, On the determination of the anisotropic plasticity of metal materials by using instrumented indentation. Materials & Design. 111: p. 98-107, 2016.
31. G. Bolzon, V. Buljak, G. Maier, and B. Miller, Assessment of elastic–plastic material parameters comparatively by three procedures based on indentation test and inverse analysis. Inverse Problems in Science and Engineering. 19: p. 815-837, 2011.
32. R. Hajali, H. Kim, S. Koh, A. Saxena, and R. Tummala, Nonlinear constitutive models from nanoindentation tests using artificial neural networks. International Journal of Plasticity. 24: p. 371-396, 2008.
33. Y. Li, P. Stevens, M. Sun, C. Zhang, and W. Wang, Improvement of predicting mechanical properties from spherical indentation test. International Journal of Mechanical Sciences. 117: p. 182-196, 2016.
34. M. Dao, N.v. Chollacoop, K. Van Vliet, T. Venkatesh, and S. Suresh, Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Materialia. 49: p. 3899-3918, 2001.
35. J. Lee, C. Lee, and B. Kim, Reverse analysis of nano-indentation using different representative strains and residual indentation profiles. Materials & Design. 30: p. 3395-3404, 2009.
36. N. Ogasawara, N. Chiba, and X. Chen, Representative Strain of Indentation Analysis. Journal of Materials Research. 20: p. 2225-2234, 2005.
37. N. Ogasawara, N. Chiba, and X. Chen, Limit analysis-based approach to determine the material plastic properties with conical indentation. Journal of Materials Research. 21: p. 947-957, 2006.
38. J.L. Bucaille, S. Stauss, E. Felder, and J. Michler, Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Materialia. 51: p. 1663-1678, 2003.
39. N. Chollacoop, M. Dao, and S. Suresh, Depth-sensing instrumented indentation with dual sharp indenters. Acta Materialia. 51: p. 3713-3729, 2003.
40. G. Cheng, K.S. Choi, X. Hu, and X. Sun, Determining individual phase properties in a multi-phase Q&P steel using multi-scale indentation tests. Materials Science and Engineering: A. 652: p. 384-395, 2016.
41. J.H. Lee, T. Kim, and H. Lee, A study on robust indentation techniques to evaluate elastic–plastic properties of metals. International Journal of Solids and Structures. 47: p. 647-664, 2010.
42. H. Lee, J. Haeng Lee, and G.M. Pharr, A numerical approach to spherical indentation techniques for material property evaluation. Journal of the Mechanics and Physics of Solids. 53: p. 2037-2069, 2005.
43. C. Zhang, F. Li, and B. Wang, Estimation of the elasto-plastic properties of metallic materials from micro-hardness measurements. Journal of Materials Science. 48: p. 4446-4451, 2013.
44. D. Tabor, The hardness of metals. Oxford university press, London, 2000.
45. E. Meyer, Investigations of hardness testing and hardness. Physikalische Zeitschrift 9: p. 18, 1908.
46. A. Zang and O. Stephansson, Stress field of the Earth's crust. Springer Science & Business Media, Potsdam, 2009.
47. H. Francis, Phenomenological analysis of plastic spherical indentation. Journal of Engineering Materials and Technology. 98: p. 272-281, 1976.
48. V. Karthik, P. Visweswaran, A. Bhushan, D. Pawaskar, K. Kasiviswanathan, T. Jayakumar, and B. Raj, Finite element analysis of spherical indentation to study pile-up/sink-in phenomena in steels and experimental validation. International Journal of Mechanical Sciences. 54: p. 74-83, 2012.
49. B. Taljat, T. Zacharia, and F. Kosel, New analytical procedure to determine stress-strain curve from spherical indentation data. International Journal of Solids and Structures. 35: p. 4411-4426, 1998.
50. R. Hill, B. Storåkers, and A. Zdunek, A theoretical study of the Brinell hardness test. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences. 423: p. 301-330, 1989.
51. J. Matthews, Indentation hardness and hot pressing. Acta metallurgica. 28: p. 311-318, 1980.
52. W.C. Oliver and G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research. 19: p. 3-20, 2004.
53. B. Xu and X. Chen, Determining engineering stress–strain curve directly from the load–depth curve of spherical indentation test. Journal of Materials Research. 25: p. 2297-2307, 2011.
54. S. Pathak, J. Shaffer, and S.R. Kalidindi, Determination of an effective zero-point and extraction of indentation stress–strain curves without the continuous stiffness measurement signal. Scripta Materialia. 60: p. 439-442, 2009.
55. P. Haušild, A. Materna, and J. Nohava, On the identification of stress–strain relation by instrumented indentation with spherical indenter. Materials & Design. 37: p. 373-378, 2012.
56. F.O. Sonmez and A. Demir, Analytical relations between hardness and strain for cold formed parts. Journal of Materials Processing Technology. 186: p. 163-173, 2007.
57. O. Richmond, H. Morrison, and M. Devenpeck, Sphere indentation with application to the Brinell hardness test. International Journal of Mechanical Sciences. 16: p. 75-82, 1974.
58. E.G. Herbert, W. Oliver, and G. Pharr, On the measurement of yield strength by spherical indentation. Philosophical Magazine. 86: p. 5521-5539, 2006.
59. H. Habbab, B. Mellor, and S. Syngellakis, Post-yield characterisation of metals with significant pile-up through spherical indentations. Acta Materialia. 54: p. 1965-1973, 2006.
60. C. Chang, M.A. Garrido, J. Ruiz-Hervias, Z. Zhang, and L.-l. Zhang, Representative Stress-Strain Curve by Spherical Indentation on Elastic-Plastic Materials. Advances in Materials Science and Engineering. 2018: p. 1-9, 2018.
61. A. Leitner, V. Maier-Kiener, and D. Kiener, Essential refinements of spherical nanoindentation protocols for the reliable determination of mechanical flow curves. Materials & Design. 146: p. 69-80, 2018.
62. Y. Tirupataiah and G. Sundararajan, On the constraint factor associated with the indentation of work-hardening materials with a spherical ball. Metallurgical transactions A. 22: p. 2375-2384, 1991.
63. M.Y. N’Jock, D. Chicot, X. Decoopman, J. Lesage, J. Ndjaka, and A. Pertuz, Mechanical tensile properties by spherical macroindentation using an indentation strain-hardening exponent. International Journal of Mechanical Sciences. 75: p. 257-264, 2013.
64. S. Basu, A. Moseson, and M.W. Barsoum, On the determination of spherical nanoindentation stress–strain curves. Journal of Materials Research. 21: p. 2628-2637, 2006.
65. A.S. Alaboodi and Z. Hussain, Finite element modeling of nano-indentation technique to characterize thin film coatings. Journal of King Saud University - Engineering Sciences. 31: p. 61-69, 2019.
66. K. Fu, L. Chang, B. Zheng, Y. Tang, and H. Wang, On the determination of representative stress–strain relation of metallic materials using instrumented indentation. Materials & Design (1980-2015). 65: p. 989-994, 2015.
67. S.B. Wu and K.S. Guan, Evaluation of tensile properties of austenitic stainless steel 316L with linear hardening by modified indentation method. Materials Science and Technology. 30: p. 1404-1409, 2014.
68. Z. Cao and X. Zhang, Nanoindentation stress–strain curves of plasma-enhanced chemical vapor deposited silicon oxide thin films. Thin Solid Films. 516: p. 1941-1951, 2008.
69. J.-Y. Kim, K.-W. Lee, J.-S. Lee, and D. Kwon, Determination of tensile properties by instrumented indentation technique: Representative stress and strain approach. Surface and Coatings Technology. 201: p. 4278-4283, 2006.
70. G. Kermouche, J.L. Loubet, and J.M. Bergheau, Extraction of stress–strain curves of elastic–viscoplastic solids using conical/pyramidal indentation testing with application to polymers. Mechanics of Materials. 40: p. 271-283, 2008.
71. P. Fernandez-Zelaia, V. Roshan Joseph, S.R. Kalidindi, and S.N. Melkote, Estimating mechanical properties from spherical indentation using Bayesian approaches. Materials & Design. 147: p. 92-105, 2018.
72. F. Pöhl, A Methodology for Inverse Determination of Stress-strain Curves Based on Spherical Indentation. Experimental Techniques. 42: p. 343-353, 2018.
73. T.R. Chandrupatla, A.D. Belegundu, T. Ramesh, and C. Ray, Introduction to finite elements in engineering. Vol. 2. Prentice Hall Upper Saddle River, NJ, 2002.
74. 王栢村, 電腦輔助工程分析之實務與應用. 全華科技圖書公司, 台北, 2001.
75. R.J. Asaro, Crystal plasticity. Journal of Applied Mechanics. 50: p. 921-934, 1983.
76. R.J. Asaro and A. Needleman, Overview no. 42 texture development and strain hardening in rate dependent polycrystals. Acta metallurgica. 33: p. 923-953, 1985.
77. E.B. Marin, On the formulation of a crystal plasticity model. Sandia National Laboratories, United States, 2006.
78. L. Anand, Constitutive equations for hot-working of metals. International Journal of Plasticity. 1: p. 213-231, 1985.
79. S.R. Kalidindi, C.A. Bronkhorst, and L. Anand, Crystallographic texture evolution in bulk deformation processing of FCC metals. Journal of the Mechanics and Physics of Solids. 40: p. 537-569, 1992.
80. U. Kocks, The relation between polycrystal deformation and single-crystal deformation. Metallurgical and Materials Transactions B. 1: p. 1121-1143, 1970.
81. J. Simo and T. Hughes, Objective integration algorithms for rate formulations of elastoplasticity. Computational inelasticity. p. 276-299, 1998.
82. A. Morawiec, Some Statistical Issues, in Orientations and Rotations. Springer. Berlin, Heidelberg, p. 81-92, 2004.
83. T. Pardoen, I. Doghri, and F. Delannay, Experimental and numerical comparison of void growth models and void coalescence criteria for the prediction of ductile fracture in copper bars. Acta Materialia. 46: p. 541-552, 1998.
84. I. Kovacs and G. Vörös, On the mathematical description of the tensile stress-strain curves of polycrystalline face centered cubic metals. International Journal of Plasticity. 12: p. 35-43, 1996.
85. D. Das and P. Chakraborti, Effect of stress parameters on ratcheting deformation stages of polycrystalline OFHC copper. Fatigue & Fracture of Engineering Materials & Structures. 34: p. 734-742, 2011.
86. H. Ledbetter and E. Naimon, Elastic properties of metals and alloys. II. Copper. Journal of physical and chemical reference data. 3: p. 897-935, 1974.
87. B. Taljat and G.M. Pharr, Development of pile-up during spherical indentation of elastic–plastic solids. International Journal of Solids and Structures. 41: p. 3891-3904, 2004.
88. Y.-T. Cheng and C.-M. Cheng, Effects of'sinking in'and'piling up'on estimating the contact area under load in indentation. Philosophical Magazine Letters. 78: p. 115-120, 1998.
89. S.H. Kim, B.W. Lee, Y. Choi, and D. Kwon, Quantitative determination of contact depth during spherical indentation of metallic materials—A FEM study. Materials Science and Engineering: A. 415: p. 59-65, 2006.
90. 孫仲紹, 以晶體塑性有限元素法模擬多晶銅軋延之塑流曲線及織構. 2019. 成功大學材料科學及工程學系碩士論文.
91. B. R. Donohue, A. Ambrus and S. R. Kalidindi, Critical evaluation of the indentation data analyses methods for the extraction of isotropic uniaxial mechanical properties using finite element models. Acta Materialia. 60: p. 3943-3952, 2012.
校內:2025-08-10公開