簡易檢索 / 詳目顯示

研究生: 蔡肯佑
Tsai, Ken-You
論文名稱: 壁效應對患者特徵血液動力學的影響
Influences of wall effects on patient-specific hemodynamics
指導教授: 陳嘉元
Chen, Chia-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 71
中文關鍵詞: 壁效應主動脈三維病人特徵模型數值分析血液動力學體外實驗流場可視化
外文關鍵詞: Wall effects, thoracic aorta, three-dimensional (3D) patient-specific model, numerical analysis, hemodynamics, in-vitro experiment
相關次數: 點閱:124下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 動脈壁增厚是動脈粥樣硬化的早期跡象與胸主動脈瘤及栓塞性中風的心血管疾病(Cardiovascular diseases,CVDs)的患病率和發病率有關。基於血液動力學的分析用於特定患者的風險評估是CVDs臨床管理的一種有前途的方法。在影響這些評估的各種因素中,主動脈壁厚度成為重要因素。通過計算流體力學的流固耦合分析(Fluid-Solid Interaction,FSI)模擬不同壁效應的匹配厚度之主動脈模型中脈動性血流與壁面結構力學之間的複雜機械相互作用。這項研究調查主動脈內的流場及速度截面,顯示在心動週期上的壁位移和主動脈有效應力,確定流場速度截面及壁面剪應力,其中在FSI 均勻厚度與剛性壁中的壁面剪應力最大相差比為6.4% - 10.3%,而在 FSI 多變厚度的最大差異比為2.5% - 3.1%,在體外實驗部分架構矽酮主動脈模型流場並計算模型厚度且比較流場可視化模擬與實驗之間的結果,可以觀察到在降主動脈壁面上會有粒子碰撞現象,而後隨流體慣性作用加速至出口處。根據數值模擬及實驗部分提供了對胸主動脈瘤及栓塞型中風的生物力學的病因學見解,壁效應對主動脈模型血液動力學研究可能在臨床上診斷有進一步的貢獻。

    Arterial wall thickening is an early sign of atherosclerosis and is related to the prevalence and incidence of thoracic aortic aneurysms and embolic stroke cardiovascular disease (CVD). Among the various factors that affect these assessments, the thickness of the aortic wall becomes an important factor. The complex mechanical interaction between blood flow and wall structure mechanics in the aortic model is simulated by fluid-structure coupling (FSI) and has matching thicknesses with different wall effects. This study investigated the flow field and velocity cross-section within the aorta showed systolic wall displacement and effective aortic stress and determined the flow field velocity cross-section and wall shear stress, where the wall thickness in FSI is uniform for rigid walls. The maximum shear stress difference is 6.4%-10.3%, and the maximum difference in variable thickness in FSI is 2.5%-3.1%. In the in vitro experiment part, the silicone aortic model flow field was established, the thickness of the model was calculated, and the visualization effect of the flow field was compared. As a result, between simulation and experiment, it can be observed that the particles collide on the wall of the descending aorta and then accelerate to the outlet with fluid inertia. According to the numerical simulation and experimental part, it provides biomechanical insights into thoracic aortic aneurysms and embolic strokes. The wall effect may further contribute to the clinical diagnosis of aortic model hemodynamics.

    摘要 I 誌謝 VII 目錄 VIII 表目錄 X 圖目錄 XI 第一章、 緒論 1 1.1 研究背景 1 1.2 文獻回顧 6 1.2.1 主動脈數值模擬的文獻回顧 6 1.2.2 主動脈體外模型研究的文獻回顧 13 1.2.3 血液動力學文獻回顧 15 1.3 研究目標 18 第二章、 研究方法 19 2.1 數值模擬方法 19 2.1.1 患者特徵之模型建立 19 2.1.2 統御方程式 24 2.1.3 流體性質 25 2.1.4 材料設定 26 2.1.5 邊界條件 28 2.1.6 流固耦合 30 2.1.7 網格獨立性收斂分析 31 2.1.8 血液動力學參數分析 33 2.1.8.1 有效應力 35 2.1.8.2 壁面剪應力 38 2.2 實驗方法 40 2.2.1 主動脈模型製作 40 2.2.2 模型區域厚度差異比 42 2.2.3 流場循環系統架設及可視化 43 第三章、 結果與討論 49 3.1 數值模擬分析 50 3.1.1 壁面結構域分析 50 3.1.1.1 有效應力分析 50 3.1.1.2 位移分析 51 3.1.2 血液流體域分析 53 3.1.2.1 流動型態分析 53 3.1.2.2 壁面剪應力分析 57 3.2 實驗結果分析 59 3.2.1 厚度差異分析 59 3.2.2 流場可視化 61 第四章、 結論與未來展望 62 4.1 結論 62 4.2 建議與未來展望 63 參考文獻 64

    [1] G. A. Roth et al., "Global and regional patterns in cardiovascular mortality from 1990 to 2013," vol. 132, no. 17, pp. 1667-1678, 2015.
    [2] G. A. Roth et al., "Demographic and epidemiologic drivers of global cardiovascular mortality," vol. 372, no. 14, pp. 1333-1341, 2015.
    [3] J. Sanz and Z. A. J. N. Fayad, "Imaging of atherosclerotic cardiovascular disease," vol. 451, no. 7181, pp. 953-957, 2008.
    [4] L. Stoner, M. J. J. J. o. a. Sabatier, and thrombosis, "Use of ultrasound for non-invasive assessment of flow-mediated dilation," pp. 1202290475-1202290475, 2012.
    [5] L. Waite and J. M. Fine, "Applied biofluid mechanics," 2007.
    [6] Y.-H. Lu, K. Mani, B. Panigrahi, S. Hajari, C.-Y. J. C. e. Chen, and technology, "A shape memory alloy-based miniaturized actuator for catheter interventions," vol. 9, no. 3, pp. 405-413, 2018.
    [7] A. Caballero, S. J. C. E. Laín, and Technology, "A review on computational fluid dynamics modelling in human thoracic aorta," vol. 4, no. 2, pp. 103-130, 2013.
    [8] Z. Cheng et al., "Initial findings and potential applicability of computational simulation of the aorta in acute type B dissection," vol. 57, no. 2, pp. 35S-43S, 2013.
    [9] C. Karmonik et al., "Computational study of haemodynamic effects of entry-and exit-tear coverage in a DeBakey type III aortic dissection: technical report," vol. 42, no. 2, pp. 172-177, 2011.
    [10] M. Alimohammadi, O. Agu, S. Balabani, V. J. M. e. Díaz-Zuccarini, and physics, "Development of a patient-specific simulation tool to analyse aortic dissections: assessment of mixed patient-specific flow and pressure boundary conditions," vol. 36, no. 3, pp. 275-284, 2014.
    [11] Z. Cheng et al., "Analysis of flow patterns in a patient-specific aortic dissection model," vol. 132, no. 5, 2010.
    [12] S. Laín and M. J. P. t. Sommerfeld, "Characterisation of pneumatic conveying systems using the Euler/Lagrange approach," vol. 235, pp. 764-782, 2013.
    [13] S. Lain, M. Sommerfeld, and B. J. B. J. o. C. E. Quintero, "Numerical simulation of secondary flow in pneumatic conveying of solid particles in a horizontal circular pipe," vol. 26, no. 3, pp. 583-594, 2009.
    [14] L. Taelman et al., "Differential impact of local stiffening and narrowing on hemodynamics in repaired aortic coarctation: an FSI study," vol. 54, no. 2-3, pp. 497-510, 2016.
    [15] M. Malvè, M. Cilla, E. Peña, and M. A. Martínez, "Impact of the Fluid-Structure Interaction Modeling on the Human Vessel Hemodynamics," in Advances in Biomechanics and Tissue Regeneration: Elsevier, 2019, pp. 79-93.
    [16] P. Reymond, P. Crosetto, S. Deparis, A. Quarteroni, N. J. M. e. Stergiopulos, and physics, "Physiological simulation of blood flow in the aorta: comparison of hemodynamic indices as predicted by 3-D FSI, 3-D rigid wall and 1-D models," vol. 35, no. 6, pp. 784-791, 2013.
    [17] Y. Bazilevs, M.-C. Hsu, D. Benson, S. Sankaran, and A. J. C. M. Marsden, "Computational fluid–structure interaction: methods and application to a total cavopulmonary connection," vol. 45, no. 1, pp. 77-89, 2009.
    [18] M. Nowak et al., "The protocol for using elastic wall model in modeling blood flow within human artery," vol. 77, pp. 273-280, 2019.
    [19] Y. Bazilevs, J. Gohean, T. Hughes, R. D. Moser, Y. J. C. M. i. A. M. Zhang, and Engineering, "Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device," vol. 198, no. 45-46, pp. 3534-3550, 2009.
    [20] U. Küttler, M. Gee, C. Förster, A. Comerford, and W. A. J. I. J. f. N. M. i. B. E. Wall, "Coupling strategies for biomedical fluid–structure interaction problems," vol. 26, no. 3‐4, pp. 305-321, 2010.
    [21] J. Lantz, J. Renner, and M. J. I. J. o. A. M. Karlsson, "Wall shear stress in a subject specific human aorta—influence of fluid-structure interaction," vol. 3, no. 04, pp. 759-778, 2011.
    [22] H. Suito, K. Takizawa, V. Q. Huynh, D. Sze, and T. J. C. M. Ueda, "FSI analysis of the blood flow and geometrical characteristics in the thoracic aorta," vol. 54, no. 4, pp. 1035-1045, 2014.
    [23] P. Crosetto et al., "Fluid–structure interaction simulation of aortic blood flow," vol. 43, no. 1, pp. 46-57, 2011.
    [24] R. Savabi, M. Nabaei, S. Farajollahi, and N. J. I. J. o. M. S. Fatouraee, "Fluid structure interaction modeling of aortic arch and carotid bifurcation as the location of baroreceptors," vol. 165, p. 105222, 2020.
    [25] B. Mensel et al., "MRI-based determination of reference values of thoracic aortic wall thickness in a general population," vol. 24, no. 9, pp. 2038-2044, 2014.
    [26] A. Borghi, N. B. Wood, R. H. Mohiaddin, X. Y. J. J. o. F. Xu, and Structures, "Fluid–solid interaction simulation of flow and stress pattern in thoracoabdominal aneurysms: a patient-specific study," vol. 24, no. 2, pp. 270-280, 2008.
    [27] L. Boussel et al., "Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study," vol. 39, no. 11, pp. 2997-3002, 2008.
    [28] C. Canstein et al., "3D MR flow analysis in realistic rapid‐prototyping model systems of the thoracic aorta: comparison with in vivo data and computational fluid dynamics in identical vessel geometries," vol. 59, no. 3, pp. 535-546, 2008.
    [29] N. B. Wood, S. J. Weston, P. J. Kilner, A. D. Gosman, and D. N. J. J. o. M. R. I. A. O. J. o. t. I. S. f. M. R. i. M. Firmin, "Combined MR imaging and CFD simulation of flow in the human descending aorta," vol. 13, no. 5, pp. 699-713, 2001.
    [30] N. Shahcheraghi, H. Dwyer, A. Cheer, A. Barakat, and T. J. J. B. E. Rutaganira, "Unsteady and three-dimensional simulation of blood flow in the human aortic arch," vol. 124, no. 4, pp. 378-387, 2002.
    [31] J. Humphrey and C. J. A. R. B. E. Taylor, "Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models," vol. 10, pp. 221-246, 2008.
    [32] A. J. Schriefl, G. Zeindlinger, D. M. Pierce, P. Regitnig, and G. A. J. J. o. t. R. S. I. Holzapfel, "Determination of the layer-specific distributed collagen fibre orientations in human thoracic and abdominal aortas and common iliac arteries," vol. 9, no. 71, pp. 1275-1286, 2012.
    [33] J. Biasetti, F. Hussain, and T. C. J. J. o. T. R. S. I. Gasser, "Blood flow and coherent vortices in the normal and aneurysmatic aortas: a fluid dynamical approach to intra-luminal thrombus formation," vol. 8, no. 63, pp. 1449-1461, 2011.
    [34] W. R. J. T. L. Dean, Edinburgh,, D. P. Magazine, and J. o. Science, "XVI. Note on the motion of fluid in a curved pipe," vol. 4, no. 20, pp. 208-223, 1927.
    [35] J. Jung, A. J. M. e. Hassanein, and physics, "Three-phase CFD analytical modeling of blood flow," vol. 30, no. 1, pp. 91-103, 2008.
    [36] C.-Y. Chen, R. Antón, M.-y. Hung, P. Menon, E. A. Finol, and K. J. J. o. b. e. Pekkan, "Effects of intraluminal thrombus on patient-specific abdominal aortic aneurysm hemodynamics via stereoscopic particle image velocity and computational fluid dynamics modeling," vol. 136, no. 3, 2014.
    [37] M. Conti et al., "Carotid artery hemodynamics before and after stenting: A patient specific CFD study," vol. 141, pp. 62-74, 2016.
    [38] A. D. Bordones, M. Leroux, V. O. Kheyfets, Y.-A. Wu, C.-Y. Chen, and E. A. J. A. o. b. e. Finol, "Computational fluid dynamics modeling of the human pulmonary arteries with experimental validation," vol. 46, no. 9, pp. 1309-1324, 2018.
    [39] M. F. O'Rourke, A. Pauca, and X. J. J. B. j. o. c. p. Jiang, "Pulse wave analysis," vol. 51, no. 6, pp. 507-522, 2001.
    [40] S. G. Yazdi, P. Geoghegan, P. Docherty, M. Jermy, and A. J. A. o. b. e. Khanafer, "A review of arterial phantom fabrication methods for flow measurement using PIV techniques," vol. 46, no. 11, pp. 1697-1721, 2018.
    [41] D. Mori, T. J. C. M. i. B. Yamaguchi, and B. Engineering, "Computational fluid dynamics modeling and analysis of the effect of 3-D distortion of the human aortic arch," vol. 5, no. 3, pp. 249-260, 2002.
    [42] D. Mori, T. Hayasaka, T. J. J. I. J. S. C. M. S. Yamaguchi, Machine Elements, and Manufacturing, "Modeling of the human aortic arch with its major branches for computational fluid dynamics simulation of the blood flow," vol. 45, no. 4, pp. 997-1002, 2002.
    [43] S. Jin, J. Oshinski, and D. P. J. J. B. E. Giddens, "Effects of wall motion and compliance on flow patterns in the ascending aorta," vol. 125, no. 3, pp. 347-354, 2003.
    [44] A. Leuprecht, S. Kozerke, P. Boesiger, and K. J. J. o. e. m. Perktold, "Blood flow in the human ascending aorta: a combined MRI and CFD study," vol. 47, no. 3-4, pp. 387-404, 2003.
    [45] T. Kim, A. Cheer, and H. J. J. o. b. Dwyer, "A simulated dye method for flow visualization with a computational model for blood flow," vol. 37, no. 8, pp. 1125-1136, 2004.
    [46] L. Morris et al., "3-D numerical simulation of blood flow through models of the human aorta," 2005.
    [47] F. Gao, M. Watanabe, and T. J. B. e. o. Matsuzawa, "Stress analysis in a layered aortic arch model under pulsatile blood flow," vol. 5, no. 1, p. 25, 2006.
    [48] F. Gao and T. J. E. l. Matsuzawa, "FSI within Aortic Arch Model over Cardiac Cycle and Influence of Wall Stiffness on Wall Stress in Layered Wall," vol. 13, no. 3, 2006.
    [49] F. Gao, Z. Guo, M. Sakamoto, and T. J. J. o. b. p. Matsuzawa, "Fluid-structure interaction within a layered aortic arch model," vol. 32, no. 5, pp. 435-454, 2006.
    [50] R. Gardhagen, J. Renner, T. Lanne, and M. J. W. T. B. B. Karlsson, "Subject specific wall shear stress in the human thoracic aorta," vol. 3, pp. 609-614, 2006.
    [51] J. Y. Park, C. Y. Park, C. M. Hwang, K. Sun, B. G. J. C. i. b. Min, and medicine, "Pseudo-organ boundary conditions applied to a computational fluid dynamics model of the human aorta," vol. 37, no. 8, pp. 1063-1072, 2007.
    [52] F. Gao, O. Ohta, T. J. A. P. Matsuzawa, and E. S. i. Medicine, "Fluid-structure interaction in layered aortic arch aneurysm model: assessing the combined influence of arch aneurysm and wall stiffness," vol. 31, no. 1, p. 32, 2008.
    [53] S. Lam, G. S. Fung, S. W. Cheng, K. J. M. Chow, b. engineering, and computing, "A computational study on the biomechanical factors related to stent-graft models in the thoracic aorta," vol. 46, no. 11, pp. 1129-1138, 2008.
    [54] J. Soulis, G. Giannoglou, M. Dimitrakopoulou, V. Papaioannou, S. Logothetides, and D. J. T. o. c. m. j. Mikhailidis, "Influence of oscillating flow on LDL transport and wall shear stress in the normal aortic arch," vol. 3, p. 128, 2009.
    [55] J. Renner et al., "A method for subject specific estimation of aortic wall shear stress," vol. 6, no. 3, pp. 49-57, 2009.
    [56] J. Renner, D. Loyd, T. Länne, and M. J. W. T. o. F. M. Karlsson, "Is a flat inlet profile sufficient for WSS estimation in the aortic arch," vol. 4, no. 4, pp. 148-160, 2009.
    [57] H. J. Kim et al., "On coupling a lumped parameter heart model and a three-dimensional finite element aorta model," vol. 37, no. 11, pp. 2153-2169, 2009.
    [58] X. Liu et al., "A numerical study on the flow of blood and the transport of LDL in the human aorta: the physiological significance of the helical flow in the aortic arch," vol. 297, no. 1, pp. H163-H170, 2009.
    [59] F. Tan et al., "Analysis of flow patterns in a patient-specific thoracic aortic aneurysm model," vol. 87, no. 11-12, pp. 680-690, 2009.
    [60] C.-Y. Wen, A.-S. Yang, L.-Y. Tseng, and J.-W. J. A. o. b. e. Chai, "Investigation of pulsatile flowfield in healthy thoracic aorta models," vol. 38, no. 2, pp. 391-402, 2010.
    [61] X. Liu, Y. Fan, and X. J. A. o. b. e. Deng, "Effect of spiral flow on the transport of oxygen in the aorta: a numerical study," vol. 38, no. 3, pp. 917-926, 2010.
    [62] X. Wang, X. J. C. i. b. Li, and medicine, "Biomechanical behaviors of curved artery with flexible wall: A numerical study using fluid–structure interaction method," vol. 41, no. 11, pp. 1014-1021, 2011.
    [63] X. Wang, X. J. C. i. b. Li, and medicine, "Computational simulation of aortic aneurysm using FSI method: influence of blood viscosity on aneurismal dynamic behaviors," vol. 41, no. 9, pp. 812-821, 2011.
    [64] X. Liu, Y. Fan, X. Deng, and F. J. J. o. b. Zhan, "Effect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta," vol. 44, no. 6, pp. 1123-1131, 2011.
    [65] J. Soulis, D. Fytanidis, V. Papaioannou, H. Styliadis, and G. J. H. Giannoglou, "Oscillating LDL accumulation in normal human aortic arch-shear dependent endothelium," vol. 15, no. 1, p. 22, 2011.
    [66] A. Benim, A. Nahavandi, A. Assmann, D. Schubert, P. Feindt, and S. J. A. M. M. Suh, "Simulation of blood flow in human aorta with emphasis on outlet boundary conditions," vol. 35, no. 7, pp. 3175-3188, 2011.
    [67] K. M. Tse, P. Chiu, H. P. Lee, and P. J. J. o. b. Ho, "Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations," vol. 44, no. 5, pp. 827-836, 2011.
    [68] N. Filipovic, D. Milasinovic, N. Zdravkovic, D. Böckler, H. J. C. m. von Tengg-Kobligk, and p. i. biomedicine, "Impact of aortic repair based on flow field computer simulation within the thoracic aorta," vol. 101, no. 3, pp. 243-252, 2011.
    [69] Z. Keshavarz-Motamed, L. J. M. e. Kadem, and physics, "3D pulsatile flow in a curved tube with coexisting model of aortic stenosis and coarctation of the aorta," vol. 33, no. 3, pp. 315-324, 2011.
    [70] L. J. Olivieri et al., "Hemodynamic modeling of surgically repaired coarctation of the aorta," vol. 2, no. 4, pp. 288-295, 2011.
    [71] J. F. LaDisa et al., "Computational simulations for aortic coarctation: representative results from a sampling of patients," vol. 133, no. 9, 2011.
    [72] J. F. Jr. LaDisa et al., "Computational simulations demonstrate altered wall shear stress in aortic coarctation patients treated by resection with end‐to‐end anastomosis," vol. 6, no. 5, pp. 432-443, 2011.
    [73] D. Gallo et al., "On the use of in vivo measured flow rates as boundary conditions for image-based hemodynamic models of the human aorta: implications for indicators of abnormal flow," vol. 40, no. 3, pp. 729-741, 2012.
    [74] J. Lantz, R. Gårdhagen, M. J. M. e. Karlsson, and physics, "Quantifying turbulent wall shear stress in a subject specific human aorta using large eddy simulation," vol. 34, no. 8, pp. 1139-1148, 2012.
    [75] A. G. Brown et al., "Accuracy vs. computational time: translating aortic simulations to the clinic," vol. 45, no. 3, pp. 516-523, 2012.
    [76] P. Vasava, P. Jalali, M. Dabagh, P. J. J. C. Kolari, and m. m. i. medicine, "Finite element modelling of pulsatile blood flow in idealized model of human aortic arch: study of hypotension and hypertension," vol. 2012, 2012.
    [77] P. Moireau et al., "External tissue support and fluid–structure simulation in blood flows," vol. 11, no. 1-2, pp. 1-18, 2012.
    [78] U. Morbiducci, R. Ponzini, D. Gallo, C. Bignardi, and G. J. J. o. b. Rizzo, "Inflow boundary conditions for image-based computational hemodynamics: impact of idealized versus measured velocity profiles in the human aorta," vol. 46, no. 1, pp. 102-109, 2013.
    [79] M. Minakawa et al., "Hydrodynamic evaluation of axillary artery perfusion for normal and diseased aorta," vol. 56, no. 5, pp. 215-221, 2008.
    [80] T. A. Kaufmann et al., "Flow distribution during cardiopulmonary bypass in dependency on the outflow cannula positioning," vol. 33, no. 11, pp. 988-992, 2009.
    [81] M. Minakawa, I. Fukuda, J. Yamazaki, K. Fukui, H. Yanaoka, and T. J. A. o. Inamura, "Effect of cannula shape on aortic wall and flow turbulence: hydrodynamic study during extracorporeal circulation in mock thoracic aorta," vol. 31, no. 12, pp. 880-886, 2007.
    [82] M. Minakawa, I. Fukuda, T. Igarashi, K. Fukui, H. Yanaoka, and T. J. A. o. Inamura, "Hydrodynamics of aortic cannulae during extracorporeal circulation in a mock aortic arch aneurysm model," vol. 34, no. 2, pp. 105-112, 2010.
    [83] R. F. Huang, T.-F. Yang, and Y.-K. J. E. i. f. Lan, "Pulsatile flows and wall-shear stresses in models simulating normal and stenosed aortic arches," vol. 48, no. 3, pp. 497-508, 2010.
    [84] M. Büsen, T. A. Kaufmann, M. Neidlin, U. Steinseifer, and S. J. J. J. o. b. Sonntag, "In vitro flow investigations in the aortic arch during cardiopulmonary bypass with stereo-PIV," vol. 48, no. 10, pp. 2005-2011, 2015.
    [85] M. Laumen et al., "Flow analysis of ventricular assist device inflow and outflow cannula positioning using a naturally shaped ventricle and aortic branch," vol. 34, no. 10, pp. 798-806, 2010.
    [86] K. Pielhop, M. Klaas, and W. J. E. J. o. M.-B. F. Schröder, "Analysis of the unsteady flow in an elastic stenotic vessel," vol. 35, pp. 102-110, 2012.
    [87] A. Sulaiman et al., "In vitro non-rigid life-size model of aortic arch aneurysm for endovascular prosthesis assessment," vol. 33, no. 1, pp. 53-57, 2008.
    [88] R. Yip, R. Mongrain, A. Ranga, J. Brunette, and R. J. P. o. t. C. E. E. A. Cartier, "Development of anatomically correct mock-ups of the aorta for PIV investigations," 2004.
    [89] L. Hütter, P. H. Geoghegan, P. D. Docherty, M. S. Lazarjan, D. Clucas, and M. J. C. D. i. B. E. Jermy, "Fabrication of a compliant phantom of the human aortic arch for use in Particle Image Velocimetry (PIV) experimentation," vol. 2, no. 1, pp. 493-497, 2016.
    [90] S. Marconi et al., "A compliant aortic model for in vitro simulations: Design and manufacturing process," vol. 59, pp. 21-29, 2018.
    [91] U. Gülan, C. Calen, F. Duru, and M. J. J. o. b. Holzner, "Blood flow patterns and pressure loss in the ascending aorta: A comparative study on physiological and aneurysmal conditions," vol. 76, pp. 152-159, 2018.
    [92] A. Rinaudo and S. J. P. o. t. I. o. M. E. Pasta, Part H: Journal of Engineering in Medicine, "Regional variation of wall shear stress in ascending thoracic aortic aneurysms," vol. 228, no. 6, pp. 627-638, 2014.
    [93] E. M. J. C. Isselbacher, "Thoracic and abdominal aortic aneurysms," vol. 111, no. 6, pp. 816-828, 2005.
    [94] D. P. Nathan et al., "Pathogenesis of acute aortic dissection: a finite element stress analysis," vol. 91, no. 2, pp. 458-463, 2011.
    [95] H. Nagpal, P. Sharma, J. Chopra, and R. J. A. A. P. Patel, "Aortic Arch Morphometry and its clinical implication–A computed tomography study," vol. 3, no. 1, pp. 005-008, 2018.
    [96] P. Sahoo, C. Wilkins, and J. J. P. r. Yeager, "Threshold selection using Renyi's entropy," vol. 30, no. 1, pp. 71-84, 1997.
    [97] A. E. Li et al., "Using MRI to assess aortic wall thickness in the multiethnic study of atherosclerosis: distribution by race, sex, and age," vol. 182, no. 3, pp. 593-597, 2004.
    [98] T. J. Hughes, J. A. Cottrell, Y. J. C. m. i. a. m. Bazilevs, and engineering, "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement," vol. 194, no. 39-41, pp. 4135-4195, 2005.
    [99] Y.-H. Lu, K. Mani, B. Panigrahi, W.-T. Hsu, C.-Y. J. C. Chen, and m. m. i. medicine, "Endoleak assessment using computational fluid dynamics and image processing methods in stented abdominal aortic aneurysm models," vol. 2016, 2016.
    [100]R. Antón, C.-Y. Chen, M.-Y. Hung, E. A. Finol, K. J. C. m. i. b. Pekkan, and b. engineering, "Experimental and computational investigation of the patient-specific abdominal aortic aneurysm pressure field," vol. 18, no. 9, pp. 981-992, 2015.
    [101]M. Lara et al., "Hemodynamics of the hepatic venous three-vessel confluences using particle image velocimetry," vol. 39, no. 9, p. 2398, 2011.
    [102]Y.-H. Lu, C.-Y. Chen, P. G. Menon, K.-T. Liu, H.-H. J. J. o. M. Lin, and B. Engineering, "Hemodynamic effects of endoleak formation in abdominal aortic aneurysm patients with stent-graft implants," vol. 34, no. 6, pp. 554-558, 2014.
    [103]O. A. Bauchau and J. I. Craig, Structural analysis: with applications to aerospace structures. Springer Science & Business Media, 2009.
    [104]K.-J. Bathe and J. Dong, "Solution of incompressible viscous fluid flow with heat transfer using ADINA-F," Computers & Structures, vol. 26, no. 1-2, pp. 17-31, 1987.
    [105]劉晉奇 and 褚晴暉, "有限元素分析與ANSYS的工程應用," 2005. 滄海書局
    [106]I.-C. Jong and W. Springer, "Teaching von Mises Stress: From Principal Axes To Non-Principal Axes," in American Society for Engineering Education, 2009: American Society for Engineering Education.
    [107]P. G. Menon, N. Teslovich, C.-Y. Chen, A. Undar, and K. Pekkan, "Characterization of neonatal aortic cannula jet flow regimes for improved cardiopulmonary bypass," Journal of biomechanics, vol. 46, no. 2, pp. 362-372, 2013.
    [108]I. Johnston, D. McCluskey, C. Tan, M. J. J. o. M. Tracey, and Microengineering, "Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering," vol. 24, no. 3, p. 035017, 2014.
    [109]H. Rodrigue, B. Bhandari, W. Wang, and S.-H. J. J. o. M. P. T. Ahn, "3D soft lithography: A fabrication process for thermocurable polymers," vol. 217, pp. 302-309, 2015.
    [110]T. Hirzel, "PWM," 2020.

    無法下載圖示 校內:2025-07-09公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE