簡易檢索 / 詳目顯示

研究生: 林金源
Lin, Jin-Yuan
論文名稱: 微構件變剖面對蜂巢與泡沫材料依時性質之影響
EFFECTS OF SOLID DISTRIBUTION ON THE TIME-DEPENDENT PROPERTIES OF HONEYCOMBS
指導教授: 黃忠信
Huang, Jong-Shin
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 148
中文關鍵詞: 潛變破裂潛變潛變挫曲應力鬆弛依時性泡沫蜂巢細胞型材料
外文關鍵詞: creep-rupture, creep-buckling, stress relaxation, creep, foam, honeycomb, cellular material, time-dependent
相關次數: 點閱:98下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   當細胞型材料應用於較高溫之環境下(組成材料熔點之0.3倍以上),其將產生依時性的潛變或應力鬆弛,而非彈性變形、彈性挫曲或塑性變形,設計時必須加以考量其影響。本研究首先推導細胞型材料的應力鬆弛表示式,從表示式中發現細胞型材料的應力鬆弛速率與細胞型材料之相對密度、施加之初始應變及組成材料之應力鬆弛參數有關,藉由泡沫水泥之應力鬆弛實驗驗證,此表示式可適當地評估已知相對密度之泡沫材料,在承受定量之應變下,所產生之應力鬆弛速率。

      其次,為探討具微構件變剖面對蜂巢材料之潛變及應力鬆弛的影響,本文理論推導出潛變及應力鬆弛速率表示式,其結果亦指出潛變及應力鬆弛速率,受微構件之固體質量分佈情形所影響,且與蜂巢材料之相對密度及其組成材料之潛變或鬆弛參數有關。

      最後,考量潛變可能導致之破壞機制因所施加之應力方向而異,壓應力將導致潛變挫曲或因潛變彎曲產生過大的應變量,拉應力將造成潛變破裂,本文理論推導出具微構件變剖面之蜂巢材料之潛變挫曲表示式,同時也發現,固體質量分佈情形將影響潛變挫曲與潛變彎曲等破壞模式之轉換。至於,潛變挫曲或潛變破裂時間,本文亦有所探討,在蜂巢材料之相對密度、固體質量分佈情形及組成材料之潛變參數已知的條件下,此表示式可用以評估蜂巢材料應用於較高溫之環境下其服務時間之評估。

      When loaded at higher temperature than about 30 percent of the melting point, cellular materials deform by creep or stress relaxation, which is time-dependent, other than elastic deflection, elastic buckling and plastic collapse of cell edges. It is of importance and should be taken into account in design. The expressions for stress relaxation rates of hexagonal honeycombs, open-cell and closed-cell foams are derived first. Theoretical results show that the stress relaxation rates of cellular materials depend on their relative density, the imposed strain and the stress relaxation parameters of the solid material, from which they are made. Experimental results indicates that the stress relaxation rates of foamed alumina cements can be estimated well from the theoretical expression we proposed if their relative density and imposed strain are known.

      The creep strain rates and stress relaxation rates of hexagonal honeycombs with plateau borders are derived. Results indicate that the creep strain rates and stress relaxation rates of hexagonal honeycombs depend on their relative density, the solid distribution in cell edges and the parameter of solid cell edges. The effects of solid distribution in cell edges on the creep strain rates and stress relaxation rates of hexagonal honeycombs with plateau borders have been discussed in detail.

      The theoretical expressions for describing creep-buckling and creep-rupture of hexagonal honeycombs with plateau borders are also derived. Results indicate that the service life for hexagonal honeycombs with plate borders loaded in compression or tension can be estimated if the relative density, the solid distribution and the creep parameter of solid cell edges are known.

    Abstract……………………...……………………………………………………….I Acknowledgements…………………………..……………………………………..III Table of Contents…………………………………….……………………………....V List of Figures………………………………………………………..……………...IX List of Symbols……………………………………………………………………XIII Chapter 1 Introduction……………………………………………………….……1 1.1 Literature Review……………………………………………………… ……2 1.2 Scope of This Thesis…………………………………………………... ……6 Chapter 2 Stress Relaxation of Cellular Materials……………………….....……9 2.1 Theoretical Modeling……………………………………………………….. 9 2.2 Stress Relaxation of Hexagonal Honeycombs……………………………..11 2.3 Stress Relaxation of Open-cell Foams……………………………………..15 2.4 Stress Relaxation of Closed-cell Foams……………………………………19 2.5 Discussion……………………………………………………………........20 2.6 Conclusion………………………………………………………………...24 Chapter 3 Stress Relaxation of Alumina Cement Foams……………………….31 3.1 Experimental Methods……………………………………………………..33 3.2 Results and Discussion……………………………………………….........34 3.3 Conclusion……………………………………………………………….. .39 Chapter 4 Effect of Solid Distribution on the Creep of Hexagonal Honeycombs…………………………………………………………..49 4.1 Analysis…………………………………………………………………….49 4.2 Results and Discussion………………………………………………........56 4.2.1 Effect of ………………………………………………………….58 4.2.2 Modified Theoretical Expression…………………………………….60 4.3 Conclusion………………………………………………………………...62 Chapter 5 Effect of Solid Distribution on the Stress Relaxation of Hexagonal Honeycombs…………………………………………...……………...75 5.1 Theoretical Modeling………………………………………………………75 5.1.1 In-plane Stress Relaxation……………………………………………75 5.1.2 Out-of-plane Stress Relaxation……………………………………….80 5.2 Results and Discussion……………………………………………………..81 5.2.1 Effect of ………………………………………………………….83 5.2.2 Relationship between Stress Relaxation and Creep Compliance…….84 5.3 Conclusion………………………………………………………………...86 Chapter 6 Effect of Solid Distribution on the Creep-buckling of Hexagonal Honeycombs……………………………………………………………..93 6.1 Theoretical Analysis ………………………………………………………..93 6.2 Results and Discussion…………………………………………………..…99 6.2.1 Elastic Buckling Strength………………………………………….…99 6.2.2 Effect of on Creep-Buckling…………………………………..103 6.3 Conclusion……………………………………………………………….107 Chapter 7 Effect of Solid Distribution on the Creep-rupture of Hexagonal Honeycombs……………………………………………...…………….119 7.1 Theoretical Analysis…………………………………………………........120 7.1.1 Hexagonal Honeycombs with Uniform Thickness ……………........120 7.1.2 Hexagonal Honeycombs with Plateau Borders……………………..124 7.2 Results and Discussion………………………………………………........127 7.3 Conclusion……………………………………………………………….128 Chapter 8 Conclusions…………………………………………..…...……………139 References…………………………………………………………………………….143 Resume………………………………………………………………………………..147

    [1] Demelio, G., Genovese, K. and Pappalettere, C., “An experimental investigation of static and fatigue behaviour of sandwich composite panels joined by fasteners,” Composites Part B: Engineering, 32: 299-308, (2001).

    [2] Ramakrishna, S., Hamada, H. and Nishiwaki, M., “Bolted joints of pultruded sandwich composite laminates,” Composite Structures, 32: 227-235, (1995).

    [3] Davies, J. M., Lightweight sandwich construction, Oxford, UK: Blackwell Science, (2001).

    [4] Short, A. and Kinniburgh, W., Lightweight Concrete, 3rd edition, Applied Science, London, UK, (1978).

    [5] Tonyan, T. D. and Gibson, L. J., “Structure and mechanics of cement foams,” Journal of Materials Science, 27: 6371-6378, (1992).

    [6] Tonyan, T. D. and Gibson, L. J., “Strengthening of the cement foams,” Journal of Materials Science, 27: 6379-6386, (1992).

    [7] Huang, J. S. and Huang, Z. H., “Fatigue of cement foams in axial compression,” Journal of Materials Science, 35: 4385-4391, (2000).

    [8] Huang, J. S. and Liu, K. D., “Mechanical properties of cement foams in shear,” Journal of Materials Science, 36: 771-777, (2001).

    [9] Lapsa, V. A., “Stress relaxation phenomena at early technological phases of gas-concrete,” ACI Materials Journal, July-August: 436-439, (1999).

    [10] Gibson, L. J. and Ashby, M. F., Cellular solids: structure and properties, 2nd edition, Cambridge, UK: Cambridge University Press, (1997).

    [11] Huang, J.S. and Gibson, L. J., “Creep of sandwich beams with polymer foam cores,” Journal of Materials in Civil Engineering, 2: 171-182, (1990).

    [12] Andrews, E. W., Gibson, L. J. and Ashby, M. F., “The creep of cellular solids,” Acta Materialia, 47: 2853-2863, (1999).

    [13] Goretta, K. C., Brezny, R., Dam, C. Q., Green, D. J., De Arellano-Lopez, A. R. and Dominguez-Rodriguez, A., “High temperature mechanical behavior of porous open-
    cell ,” Materials Science and Engineering, A124: 151-158, (1990).

    [14] Huang, J. S. and Gibson, L. J., “Creep of polymer foams,” Journal of Materials Science, 26: 637-647, (1991).

    [15] Andrews, E. W., Huang, J. S. and Gibson, L. J., “Creep behavior of a closed-cell aluminum foam,” Acta Materialia, 47: 2927-2935, (1999).

    [16] Andrews, E. W. and Gibson, L. J., “The role of cellular structure in creep of two-dimensional cellular solids,” Materials Science and Engineering, A303: 120-126, (2001).

    [17] Huang, J. S. and Gibson, L. J., “Creep of open-cell Voronoi foams,” Materials Science and Engineering, A339: 220-226 (2003).

    [18] Chuang, C. H., “Mechanical properties of honeycombs with plateau borders,” Ph.D. dissertation, Department of Civil Engineering, National Cheng Kung University, Tainan, Taiwan, (2002).

    [19] Simone, A. E. and Gibson, L.J., “Aluminum foams produced by liquid-state processes,” Acta Materialia, 46: 3109-3123, (1998).

    [20] Warren, W. E. and Kraynik, A. M., “Foam mechanics: the linear elastic response of two-dimensional spatially periodic cellular materials,” Mechanics of Materials, 6: 27-37, (1987).

    [21] Kim, H. S. and Al-Hassani, S. T. S., “A morphological elastic model of general hexagonal columnar structures,” International Journal of Mechanical Science, 43: 1027-1060, (2001).

    [22] Chen, C., Lu, T. J. and Fleck, N. A., “Effect of imperfections on the yielding of two-dimensional foams,” International Journal of Mechanical Science, 47: 2235-2272, (1999).

    [23] Simone, A. E. and Gibson, L. J., “Effects of
    solid distribution on the stiffness and strength of metallic foams,” Acta Materialia; 46: 2139-50 (1998).

    [24] Chuang, C. H. and Huang, J. S., “Elastic moduli and plastic collapse strength of hexagonal honeycombs with plateau borders,” International Journal of Mechanical Science, 44: 1827-1844, (2002).

    [25] Chuang, C. H. and Huang, J. S., “Effects of solid distribution on the elastic buckling of honeycombs,” International Journal of Mechanical Science, 44: 1429-1443, (2002).

    [26] Chuang, C. H. and Huang, J. S., “Yield surfaces for hexagonal honeycombs with plateau borders under in-plane biaxial loads,” Acta Mechanica, 159: 157-172, (2002).

    [27] Huang, J. S. and Chen, T. W., “Survival probability for brittle honeycombs with plateau borders under uniaxial compression,” Acta Mechanica, 164: 61-74, (2003).

    [28] Yang, M. Y. and Huang, J. S., “Numerical analysis of the stiffness and strength of regular hexagonal honeycombs with plateau borders,” Composite Structures, 64: 107-114, (2004).

    [29] Gibson, L. J., Ashby, M. F., Schajer, G. S. and Robertson, C. I., “The mechanics of two-dimensional cellular material,” Proceedings of the Royal Society, London, A382: 25-42, (1982).

    [30] Ashby, M. F., “The mechanical properties of cellular solids,” Metallurgical Transactions A, 14: 1755-1769, (1983).

    [31] Papka, S. D. and Kyriakidse, S., “In-plane compressive response and crushing of honeycomb,” Journal of the Mechanics and Physics of Solids, 42: 1499-1532, (1994).

    [32] Cocks, A. C. F. and Ashby, M. F., “Creep-buckling of cellular solids,” Acta Materialia; 48: 3395-3400, (2000).

    [33] Monkman, F. C. and Grant, N. J., Proceedings of ASTM, 56: 593, (1956).

    [34] Brown, A. M. and Ashby, M. F., “On the power-law creep equations,” Scripta Metallurgica, 14: 1297-1302, (1980).

    [35] Ashby, M. F. and Jones, D. R. H., Engineering Materials 1, An Introduction to their Properties and Applications, 1st edition, Oxford, UK: Pergamon Press,
    (1980)

    [36] Huang, J. S., Lin, J. Y. and Jang, M. J., “Stress relaxation of foamed alumina cements,” Cement and Concrete Research, submitted, (2004).

    [37] Hsieh, Y. Y. and Mau, S. T., Elementary Theory of Structures, 4th edition, New Jersey, USA: Prentice-Hall, (1995).

    [38] Gere, J. M. and Timoshenko, S. P., Mechanics of Materials, London, UK: Wadsworth International, (1985).

    [39] Wittman, F. H., Hydraulic Cement Pastes: Their Structure and Properties, Slough, UK: Cement and Concrete Association, (1976).

    [40] Day, R. L. and Gamble, B. R., “The effect of changes in structure on the activation energy for the creep of concrete,” Cement and Concrete Research, 13: 529-540, (1983).

    [41] Dias, W. P. S., Khoury, G. A. and Suillivan, P. J. E., “An activation energy approach for the temperature dependence of basic creep of hardened cement paste,” Magazine of Concrete Research, 39: 141-147, (1987).

    下載圖示 校內:立即公開
    校外:2004-07-29公開
    QR CODE