| 研究生: |
吳俊志 Wu, Chun-Chih |
|---|---|
| 論文名稱: |
利用不同培養策略提高螺旋藻生產及其分離程序以萃取藻藍素的研究 Different Cultivation Strategies for Improving Spirulina platensis Productivity and a Harvest Method for Phycocyanin Production |
| 指導教授: |
吳文騰
Wu, Wen-Teng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 螺旋藻 、藻藍素 、最適化 、收穫 |
| 外文關鍵詞: | Spirulina sp, Phycocyanin, Optimization, Harvest |
| 相關次數: | 點閱:41 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微藻能夠利用光合作用將二氧化碳轉換成碳氫化合物,同時產生大量的生物質(Biomass),其可經過加工製成飼料、肥料、燃料,或是萃取出其他富有高經濟價值的副產物,如各種特用化學品、天然色素、多元不飽和脂肪酸等。主要會影響其細胞組成的因子為溫度、光強度、培養基營養源與繼代培養初始濃度等。
另外微藻易於培養,生長迅速,依照不同品種的藻類,約2~6天內即可進行收穫。而這個特點讓微藻在相同土地面積下,其生長速率高於其他能源作物達15 ~ 200倍以上。目前微藻收穫技術並不成熟,畢竟要將含水率極高,密度與水相近的微藻細胞與其培養液分離的難度相當高,必須耗費龐大的成本才能完成。
本研究以實驗設計法,探討不同光強度、溫度、氮源種類、進料策略及不同分級藥品所製備出的培養基對螺旋藻生長及藻藍素生產的影響,以選擇出最適化培養條件。利用獲得的條件完成培養後,再利用篩網來進行螺旋藻的固液分離。由最終實驗結果得知,當使用篩網孔徑為 37μm 能夠有效分離藻體,其移除效率可達 80% 以上。
Microalgae have been considered as the promising feedstock for biofuel production, since they can assimilate atmospheric carbon dioxide and produce high value components. Particularly, Spirulina sp. show high contents of phycocyanin, chlorophyll a, β-carotene, polysaccharides and γ-linolenic acid.
The microalgae growth is mainly influenced by the temperature, light intensity, nutrients of medium and inoculum concentration, etc. After the cultivation, harvesting of these microalgae cells is a crucial step and it contributes to 20-30% of the total expenditure of biomass production.
In this study, we investigated the effects of light intensity, temperatures, grades of chemicals used, nitrogen sources, feeding strategies on the growth and phycocyanin production of Spirulina platensis. Due to size of Spirulina sp., we found that mesh screening (pore size = 37μm) is effective to remove biomass from medium. The removal efficiency would high than 80%.
[1] Allen, John F., Jens Forsberg (2001), "Molecular Recognition in Thylakoid Structure and Function," TRENDS in Plant Science, 6(7):317-26.
[2] Avila-Leon, I., M. Chuei Matsudo, S. Sato, J. C. de Carvalho (2012), "Arthrospira Platensis Biomass with High Protein Content Cultivated in Continuous Process Using Urea as Nitrogen Source," Journal of Applied Microbiology, 112(6):1086-94. Epub 2012/04/11.
[3] Becker, E. W.; L. V. Venkataraman (1984), "Production and Utilization of the Blue-Green Alga Spirulina in India," Biomass, 4:105-25.
[4] Bezerra, Raquel Pedrosa, Marcelo Chuei Matsudo, Sunao Sato, Patrizia Perego, Attilio Converti, João Carlos Monteiro de Carvalho (2012), "Effects of Photobioreactor Configuration, Nitrogen Source and Light Intensity on the Fed-Batch Cultivation of Arthrospira (Spirulina) platensis. Bioenergetic Aspects," Biomass and Bioenergy, 37:309-17.
[5] Borowitzka, Michael A. (1999), "Commercial Production of Microalgae Ponds, Tanks, Tubes and Fermenters," Journal of Biotechnology, 70:313-21.
[6] Brennan, Liam, Philip Owende (2010), "Biofuels from Microalgae—a Review of Technologies for Production, Processing, and Extractions of Biofuels and Co-Products," Renewable and Sustainable Energy Reviews, 14(2):557-77.
[7] Butler, W. R. , J. J. Calaman, S. W. Beam (1996), "Plasma and Milk Urea Nitrogen in Relation to Pregnancy Rate in Lactating Dairy Cattle," Journal of Animal Science, 74:858-65.
[8] Chen, Feng (1996), "High Cell Density Culture of Microalgae in Heterotrophic Growth," Trend in Biotechnology, 14:421-26.
[9] Chisti, Y. (2007), "Biodiesel from Microalgae," Biotechnology Advances, 25(3):294-306. Epub 2007/03/14.
[10] Ciferri, Orio (1983), "Spirulina, the Edible Microorganism," Microbiology, 47(4):551-78.
[11] Colla, L. M., C. Oliveira Reinehr, C. Reichert, J. A. Costa (2007), "Production of Biomass and Nutraceutical Compounds by Spirulina Platensis under Different Temperature and Nitrogen Regimes," Bioresource technology, 98(7):1489-93. Epub 2006/10/31.
[12] Divakaran, Ravi, V.N. Sivasankara Pillai (2002), "Flocculation of Algae Using Chitosan," Journal of Applied Phycology, 14:419-22.
[13] Edge, R., D.J. McGarvey, T.G. Truscott (1997), "The Carotenoids as Anti-Oxidants - a Review," Journal of Photochemistry and Photobiology, 41:189-200.
[14] Edzwald, JK (1993), "Algae, Bubbles, Coagulants, and Dissolved Air Flotation," Water Science & Technology, 27(10):67-81.
[15] Faucher, Onil, Bernard Coupal, Anh Leduy (1979), "Utilization of Sea Water-Urea as a Culture Medium for Spirulina Maxima," Canadian Journal of Microbiology, 25(6):752-59.
[16] Glazer, Alexander N. (1994), "Phycobiliproteins - a Family of Valuable, Widely Used Fluorophores," Journal of Applied Phycology, 6:105-12.
[17] Grima, E. Molina , E. -H. Belarbi, F.G. Acien Fernandez, A. Robles Medinaa, Yusuf Chisti (2003), "Recovery of Microalgal Biomass and Metabolites: Process Options and Economics," Biotechnology Advances, 20:491-515.
[18] Grima, Emilio Molina, Jose María Fernández Sevilla, Francisco Gabriel Acién Fernández (1999), "Microalgae, Mass Culture Methods," Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology.
[19] Hu, Qiang, Hugo Guterman, Amos Richmond (1996), "A Flat Inclined Modular Photobioreactor for Outdoor Mass Cultivation of Photoautotrophs," Biotechnology and Bioengineering, 51:51-60.
[20] Kirk, John Thomas Osmond. Light and Photosynthesis in Aquatic Ecosystems: Cambridge university press; 1994.
[21] Krause, G. H.; E. Weis (1991), "Chlorophyll Fluorescence and Photosynthesis: The Basics," Plant Physiol Plant Mol Biol, 42:313-49.
[22] Lee, Seok-Joo, Sugeun Go, Gwi-Taek Jeong, Sung-Koo Kim (2011), "Oil Production from Five Marine Microalgae for the Production of Biodiesel," Biotechnology and Bioprocess Engineering, 16(3):561-66.
[23] Lee, Tsai-yun; Mikio Tsuzuki; Toshifumi Takeuchi; Kenji Yokoyama; Isao Karube (1995), "Quantitative Determination of Cyanobacteria in Mixed Phytoplankton Assemblages by an in vivo Fluorimetric Method," Analytica Chimica Acta, 302:81-87.
[24] Lee, Yuan-Kun (2001), "Microalgal Mass Culture Systems and Methods Their Limitation and Potential," Journal of Applied Phycology, 13:307-15.
[25] Marquez, Facundo J.; Naomichi Nishio; Shiro Nagai (1995), "Enhancement of Biomass and Pigment Production During Growth of Spirulina Platensis in Mixotrophic Culture," Journal of Chemical Technology and Biotechnology, 62:159-64.
[26] Martin, William; Claus Schnarrenberger (1997), "The Evolution of the Calvin Cycle from Prokaryotic to Eukaryotic Chromosomes a Case Study of Functional Redundancy in Ancient Pathways through Endosymbiosis," Current Genetics, 32:1-18.
[27] Matis, K. A., G. P. Gallios Gallios, K. A. Kydros (1993), "Separation of Fines by Flotation Techniques," Separation Technology, 3:76-90.
[28] Mota, Manuel , Jose A. Teixeira, Alexander Yelshin (2002), "Influence of Cell-Shape on the Cake Resistance in Dead-End and Cross-Flow Filtrations," Separation and Purification Technology, 27:137-44.
[29] Nalewajko, Czeslawa, Brian Colman, Mary Olaveson (1997), "Effects of pH on Growth, Photosynthesis, Respiration, and Copper Tolerance of Three Scenedesmus Strains," Environmental and Experimental Botany, 37:153-60.
[30] Ogbonda, K. H., R. E. Aminigo, G. O. Abu (2007), "Influence of Temperature and pH on Biomass Production and Protein Biosynthesis in a Putative Spirulina sp," Bioresource Technology, 98(11):2207-11. Epub 2006/11/04.
[31] Park, J., H. F. Jin, B. R. Lim, K. Y. Park, K. Lee (2010), "Ammonia Removal from Anaerobic Digestion Effluent of Livestock Waste Using Green Alga Scenedesmus sp," Bioresource Technology, 101(22):8649-57. Epub 2010/07/29.
[32] Perez-Garcia, O., F. M. Escalante, L. E. de-Bashan, Y. Bashan (2011), "Heterotrophic Cultures of Microalgae: Metabolism and Potential Products," Water Research, 45(1):11-36. Epub 2010/10/26.
[33] Piorreck, Margret, Klaus-Hinnerk Baasch, Peter Pohl (1984), "Biomass Production, Total Protein, Chlorophylls, Lipids and Fatty Acids of Freshwater Green and Blue-Green Algae under Different Nitrogen Regimes," Phyrochemistry, 23(2):207-16.
[34] Pulz, O (2001), "Photobioreactors: Production Systems for Phototrophic Microorganisms," Applied Microbiology and Biotechnology, 57(3):287-93.
[35] Raoof, Basirath, B. D. Kaushik, Radha Prasanna (2006), "Formulation of a Low-Cost Medium for Mass Production of Spirulina," Biomass and Bioenergy, 30(6):537-42.
[36] Redfield, Alfred C. (1958), "The Biological Control of Chemical Factors in the Environment," American Scientist, 46(3):205-21.
[37] Reinhard, E., W. Kreis, U. Barthlen, U. Helmbold (1988), "Semicontinuous Cultivation of Digitalis Lanata Cells Production of β-Methyldigoxin in a 300-L Airlift Bioreactor," Biotechnology and Bioengineering, 34:502-08.
[38] Renaud, S. M., H. C. Zhou, D. L. Parry, Luong-Van Thinh, K. C. Woo (1995), "Effect of Temperature on the Growth, Total Lipid Content and Fatty Acid Composition of Recently Isolated Tropical Microalgae Isochrysis sp., Nitzschia Closterium, Nitzschia Paleacea, and Commercial Species Isochrysis sp.(Clone T.ISO)," Journal of Applied Phycology, 7:595-602.
[39] Richmond, A.,(2004),Handbook of Microalgal Culture: Biotechnology and Applied Phycology(1sted.), Oxford : Blackwell Publishing.
[40] Rodrigues, M. S., L. S. Ferreira, A. Converti, S. Sato, J. C. de Carvalho (2011), "Influence of Ammonium Sulphate Feeding Time on Fed-Batch Arthrospira (Spirulina) platensis Cultivation and Biomass Composition with and without pH Control," Bioresource Technology, 102(11):6587-92. Epub 2011/04/22.
[41] Rossignol, N., L. Vandanjon, P. Jaouen, F. Quemeneur (1999), "Membrane Technology for the Continuous Separation Microalgae Culture Medium Compared Performances of Cross-Flow Microfiltration and Ultrafiltration," Aquacultural Engineering, 20:191-208.
[42] Ruiz-Marin, A., L. G. Mendoza-Espinosa, T. Stephenson (2010), "Growth and Nutrient Removal in Free and Immobilized Green Algae in Batch and Semi-Continuous Cultures Treating Real Wastewater," Bioresource Technology, 101(1):58-64. Epub 2009/08/25.
[43] Santos, C. A., M. E. Ferreira, T. L. da Silva, L. Gouveia, J. M. Novais, A. Reis (2011), "A Symbiotic Gas Exchange between Bioreactors Enhances Microalgal Biomass and Lipid Productivities: Taking Advantage of Complementary Nutritional Modes," Journal of Industrial Microbiology and Biotechnology, 38(8):909-17. Epub 2010/09/09.
[44] Sarada, R. , Manoj G. Pillai, G.A. Ravishankar (1999), "Phycocyanin from Spirulina sp. Influence of Processing of Biomass on Phycocyanin Yield, Analysis of Efficacy of Extraction Methods and Stability Studies on Phycocyanin," Process Biochemistry, 34:795-801.
[45] Sobczuk, T. Mazzuca , F. Garcıa Camacho, F. Camacho Rubio, F. G. Acien Fernandez, E. Molina Grima (1999), "Carbon Dioxide Uptake Efficiency by Outdoor Microalgal Cultures in Tubular Airlift Photobioreactors," Biotechnology and Bioengineering, 67(4):465-75.
[46] Soletto, D., L. Binaghi, A. Lodi, J. C. M. Carvalho, A. Converti (2005), "Batch and Fed-Batch Cultivations of Spirulina platensis Using Ammonium Sulphate and Urea as Nitrogen Sources," Aquaculture, 243(1-4):217-24.
[47] Soundarapandian, P., B. Vasanthi (2008), "Effects of Chemical Parameters on Spirulina platensis Biomas Production Optimized Method for Phycocyanin Extraction," International Journal of Zoological Research, 4(1):1-11.
[48] Straub, O., Hanspeter P.(1987), Key to Carotenoids(1sted.), Boston : Birkhäuser Verlag Basel.
[49] Taticek, Ronald A., Murray Moo-Young, Raymond L. Legge (1991), "The Scale-up of Plant Cell Culture Engineering Considerations," Plant Cell, Tissue and Organ Culture, 24:139-58.
[50] Tenney, Mark W., Wayne F. Echelberger, Jr., John J. Coffey, Timothy J. McAloon (1970), "Chemical Conditioning of Biological Sludges for Vacuum Filtration," Water Pollution Control Federation, 42(2):1-20.
[51] Uduman, Nyomi, Ying Qi, Michael K. Danquah, Gareth M. Forde, Andrew Hoadley (2010), "Dewatering of Microalgal Cultures: A Major Bottleneck to Algae-Based Fuels," Journal of Renewable and Sustainable Energy, 2(1):012701.
[52] Vasumathi, K. K., M. Premalatha, P. Subramanian (2012), "Parameters Influencing the Design of Photobioreactor for the Growth of Microalgae," Renewable and Sustainable Energy Reviews, 16(7):5443-50.
[53] Venugopal, V., R. Prasanna, A. Sood, P. Jaiswal, B.D. Kaushik (2006), "Stimulation of Pigment Accumulation in Anabaena azollae Strains Effect of Light Intensity and Sugars," Folia Microbiol, 51(1):50-56.
[54] Wu, Z., Y. Zhu, W. Huang, C. Zhang, T. Li, Y. Zhang, et al. (2012), "Evaluation of Flocculation Induced by Ph Increase for Harvesting Microalgae and Reuse of Flocculated Medium," Bioresource Technology, 110:496-502. Epub 2012/02/14.
[55] Zeng, Xianhai, Michael K. Danquah, Shiduo Zhang, Xia Zhang, Mengyang Wu, Xiao Dong Chen, et al. (2012), "Autotrophic Cultivation of Spirulina platensis for CO2 Fixation and Phycocyanin Production," Chemical Engineering Journal, 183:192-97.
[56] 黃鈺珊(2010),「複合型光生物反應器之系統開發及其在小球藻培養上之應用」,台灣,國立成功大學化學工程研究所碩士論文。
[57] 劉翠玲,許嘉伊(2011),「藻類應用 商機無限 - 全球水產藻類發展現況與趨勢」,台灣經濟研究月刊,第三十四卷第三期,頁43-49。
[58] 闕鴻達(2011),千金難買藻知道:神奇的微藻 (pp.1-192),台北:大康出版社。
[59] 續光清(1996),食品化學 (pp.1-220),北京:徐氏基金會,世界圖書出版公司。