簡易檢索 / 詳目顯示

研究生: 吳俊志
Wu, Chun-Chih
論文名稱: 利用不同培養策略提高螺旋藻生產及其分離程序以萃取藻藍素的研究
Different Cultivation Strategies for Improving Spirulina platensis Productivity and a Harvest Method for Phycocyanin Production
指導教授: 吳文騰
Wu, Wen-Teng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 78
中文關鍵詞: 螺旋藻藻藍素最適化收穫
外文關鍵詞: Spirulina sp, Phycocyanin, Optimization, Harvest
相關次數: 點閱:41下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微藻能夠利用光合作用將二氧化碳轉換成碳氫化合物,同時產生大量的生物質(Biomass),其可經過加工製成飼料、肥料、燃料,或是萃取出其他富有高經濟價值的副產物,如各種特用化學品、天然色素、多元不飽和脂肪酸等。主要會影響其細胞組成的因子為溫度、光強度、培養基營養源與繼代培養初始濃度等。
    另外微藻易於培養,生長迅速,依照不同品種的藻類,約2~6天內即可進行收穫。而這個特點讓微藻在相同土地面積下,其生長速率高於其他能源作物達15 ~ 200倍以上。目前微藻收穫技術並不成熟,畢竟要將含水率極高,密度與水相近的微藻細胞與其培養液分離的難度相當高,必須耗費龐大的成本才能完成。
    本研究以實驗設計法,探討不同光強度、溫度、氮源種類、進料策略及不同分級藥品所製備出的培養基對螺旋藻生長及藻藍素生產的影響,以選擇出最適化培養條件。利用獲得的條件完成培養後,再利用篩網來進行螺旋藻的固液分離。由最終實驗結果得知,當使用篩網孔徑為 37μm 能夠有效分離藻體,其移除效率可達 80% 以上。

    Microalgae have been considered as the promising feedstock for biofuel production, since they can assimilate atmospheric carbon dioxide and produce high value components. Particularly, Spirulina sp. show high contents of phycocyanin, chlorophyll a, β-carotene, polysaccharides and γ-linolenic acid.
    The microalgae growth is mainly influenced by the temperature, light intensity, nutrients of medium and inoculum concentration, etc. After the cultivation, harvesting of these microalgae cells is a crucial step and it contributes to 20-30% of the total expenditure of biomass production.
    In this study, we investigated the effects of light intensity, temperatures, grades of chemicals used, nitrogen sources, feeding strategies on the growth and phycocyanin production of Spirulina platensis. Due to size of Spirulina sp., we found that mesh screening (pore size = 37μm) is effective to remove biomass from medium. The removal efficiency would high than 80%.

    目錄 摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1 1-1 前言 1 1-2 微藻與生態環境及產品開發的關聯性 2 1-3 研究動機與目的 3 第二章 文獻回顧 4 2-1 微藻簡介 4 2-2微藻生理介紹 7 2-2-1光合作用 7 2-2-2光合色素 9 2-3 微藻培養 12 2-3-1微藻培養方式 12 2-3-2 常見的培養系統 13 2-3-3 微藻培養策略 19 2-3-4 影響微藻生長的調控因子 21 2-4 分離方式簡介 25 2-4-1 物理性分離程序 25 2-4-2化學性分離程序 28 第三章 實驗材料與方法 29 3-1 藻種 29 3-2 培養基組成 30 3-2-1 碳源 30 3-2-2 氮源與其他營養鹽 30 3-3 培養流程 33 3-3-1藻種保存 33 3-3-2前培養 34 3-3-3 主培養 35 3-4實驗設備與反應器設計 35 3-4-1 複合型光生物反應器(PBRs)之設計 35 3-4-1-1矩形槽光生物反應器 35 3-4-1-2氣舉式光生物反應器 36 3-4-1-3複合型光生物反應器 36 3-4-1-4內部循環光生物反應器 37 3-4-2 培養系統 38 3-5 實驗點測量及分析方法 39 3-5-1平均光強度定義 39 3-5-2 微藻生質濃度與藻體乾重檢量線 39 3-5-2-1 分光光度計測定法 39 3-5-2-2 藻體乾重測量法 40 3-5-3 硝酸根及尿素濃度測定 41 3-5-4 藻藍素濃度與純度分析 43 3-5-5 移除效率評估 44 3-5-6 分析系統 45 第四章 結果與討論 46 4-1 批次實驗 46 4-1-1 螺旋藻生長情形及藻藍素生產與培養天數之間的關係 46 4-1-2 培養條件之最適化 49 4-1-2-1 不同光強度之影響 49 4-1-2-2 不同溫度之影響 51 4-1-3 培養基成本之探討 53 4-1-3-1 試藥級與工業級藥品之影響 53 4-1-3-2 不同種類氮源之影響 57 4-2 重複進料批次實驗 59 4-2-1 不同尿素進料策略之比較 59 4-3 複合型光生化反應器設計 63 4-3-1 矩形-吸收塔反應器系統 63 4-3-1-1 體積比20:1 63 4-3-1-2 體積比1:1 63 4-3-2 圓柱形-吸收塔內部循環反應器系統 65 4-4 收穫程序 66 第五章 結論與未來展望 69 5-1 結論 69 5-2 未來展望 70 Reference 71 附錄 77 自述 78 圖目錄 圖2-1 光合作用反應機制示意圖 7 圖2-2 藻藍蛋白化學結構 9 圖2-3 葉綠素化學結構圖: (a)葉綠素 a ; (b) 葉綠素 b 10 圖2-4多種類胡蘿蔔素化學結構: (a) Beta-類胡蘿蔔素 ; (b)茄紅素 ; (c) 黃體素 ; (d)玉米黃素 11 圖2-5 開放式藻類培養系統示意圖 16 圖2-6 密閉式藻類培養系統示意圖 17 圖2-7 微生物生長趨勢圖 19 圖2-8 光合作用速率與光照強度關係圖 22 圖2-9 垂直式及掃流式過濾工作示意圖 27 圖3-1 螺旋藻(Spirulina platensis) 的光學顯微鏡圖 29 圖3-2 矩形光生物反應器 36 圖3-3 複合型光生物反應器 37 圖3-4 內部循環光生物反應器 37 圖3-5 藻體乾重對應其吸光值之檢量線 40 圖3-6 尿素標準品濃度對吸光值之校正曲線 43 圖4-1 螺旋藻生質濃度(Biomass concentration)隨時間關係圖 47 圖4-2 螺旋藻於硝酸鈉作為氮源培養條件下,其藻藍蛋白含量(wt% of phycocyanin) 及純度(Purity)隨時間關係圖 47 圖4-3 螺旋藻於尿素作為氮源培養條件下,其藻藍蛋白含量及純度隨時間關係圖 48 圖4-4 螺旋藻於硝酸根作為氮源培養條件下,其殘留濃度對時間的關係 48 圖4-5 螺旋藻於尿素作為氮源培養條件下,其殘留濃度對時間的關係 49 圖4-6 螺旋藻培養於不同光強度之生質濃度隨時間的影響 50 圖4-7 螺旋藻培養於不同溫度之生質濃度隨時間的影響 52 圖4-8 螺旋藻培養於不同溫度條件下,與其藻藍素總量及純度之間的關係 52 圖4-9 不同等級藥品組合進行螺旋藻培養其生質濃度隨時間的影響 54 圖4-10 以不同等級藥品之組合進行螺旋藻培養後其藻藍蛋白含量及純度的差異 55 圖4-11 螺旋藻培養於不同氮源種類之生質濃度隨時間的影響 58 圖4-12 以不同種類氮源進行螺旋藻培養後其藻藍蛋白含量及純度的差異 58 圖4-13 不同尿素進料策略其添加濃度隨培養天數的影響 60 圖4-14 螺旋藻培養於不同尿素進料策略之生質濃度隨時間之影響 61 圖4-15螺旋藻培養於不同尿素進料策略之殘留尿素濃度隨時間之影響 61 圖4-16以不同尿素進料策略進行螺旋藻培養後其藻藍蛋白含量及純度的差異 62 圖4-17 矩形-吸收塔反應系統實際培養示意圖 (矩形:吸收塔體積比 = 20:1) 64 圖4-18 矩形-吸收塔反應系統實際培養示意圖 (矩形:吸收塔體積比 = 1:1) 64 圖4-19圓柱形-吸收塔內部循環反應系統實際培養示意圖(圓柱形:吸收塔體積比 = 1:1) 65 圖4-20以各規格篩網對不同存放天數的藻液進行收穫後所得之流量 (0.1g/L) 67 圖4-21以各規格篩網對不同存放天數的藻液進行收穫後所得之流量 (0.5g/L) 67 圖4-22以各規格篩網對不同存放天數的藻液進行收穫後所得之流量 (1.0g/L) 68 圖4-23以各規格篩網對不同濃度的藻液進行收穫後所得之移除效率 (放置三天) 68 表目錄 表2-1 具有潛力生產生質柴油的微藻內之含油量 5 表2-2 為市面上販售螺旋藻的成分 6 表2-3 開放式與密閉式培養系統考量因素之比較 14 表2-4 不同培養系統對其參數條件之差異 18 表3-1 Zarrouk Medium 組成 31 表3-2 Zarrouk Solution 1 組成 31 表3-3 Zarrouk Solution 2 組成 31 表3-4 P-IV Metal Solution 組成 32 表3-5 Chu Micronutrient Solution 組成 32 表3-6 Vitamin B12 組成 32 表3-7 螺旋藻培養系統的實驗儀器設備 38 表3-8 螺旋藻吸光值與沉降時間關係 39 表3-9 螺旋藻培養系統的實驗儀器設備 45 表4-1 螺旋藻培養於不同光強度下,對於生質濃度、藻藍蛋白含量、藻體內總藻藍素及純度的影響 51 表4-2 不同試藥級與工業級藥品之組合 53 表4-3 不同試藥級與工業級藥品組合所需耗費的成本 55 表4-4 不同藥品組合其經濟效益因子之比較 56 表4-5 不同尿素進料策略之比較 60

    [1] Allen, John F., Jens Forsberg (2001), "Molecular Recognition in Thylakoid Structure and Function," TRENDS in Plant Science, 6(7):317-26.

    [2] Avila-Leon, I., M. Chuei Matsudo, S. Sato, J. C. de Carvalho (2012), "Arthrospira Platensis Biomass with High Protein Content Cultivated in Continuous Process Using Urea as Nitrogen Source," Journal of Applied Microbiology, 112(6):1086-94. Epub 2012/04/11.

    [3] Becker, E. W.; L. V. Venkataraman (1984), "Production and Utilization of the Blue-Green Alga Spirulina in India," Biomass, 4:105-25.

    [4] Bezerra, Raquel Pedrosa, Marcelo Chuei Matsudo, Sunao Sato, Patrizia Perego, Attilio Converti, João Carlos Monteiro de Carvalho (2012), "Effects of Photobioreactor Configuration, Nitrogen Source and Light Intensity on the Fed-Batch Cultivation of Arthrospira (Spirulina) platensis. Bioenergetic Aspects," Biomass and Bioenergy, 37:309-17.

    [5] Borowitzka, Michael A. (1999), "Commercial Production of Microalgae Ponds, Tanks, Tubes and Fermenters," Journal of Biotechnology, 70:313-21.

    [6] Brennan, Liam, Philip Owende (2010), "Biofuels from Microalgae—a Review of Technologies for Production, Processing, and Extractions of Biofuels and Co-Products," Renewable and Sustainable Energy Reviews, 14(2):557-77.

    [7] Butler, W. R. , J. J. Calaman, S. W. Beam (1996), "Plasma and Milk Urea Nitrogen in Relation to Pregnancy Rate in Lactating Dairy Cattle," Journal of Animal Science, 74:858-65.

    [8] Chen, Feng (1996), "High Cell Density Culture of Microalgae in Heterotrophic Growth," Trend in Biotechnology, 14:421-26.

    [9] Chisti, Y. (2007), "Biodiesel from Microalgae," Biotechnology Advances, 25(3):294-306. Epub 2007/03/14.

    [10] Ciferri, Orio (1983), "Spirulina, the Edible Microorganism," Microbiology, 47(4):551-78.

    [11] Colla, L. M., C. Oliveira Reinehr, C. Reichert, J. A. Costa (2007), "Production of Biomass and Nutraceutical Compounds by Spirulina Platensis under Different Temperature and Nitrogen Regimes," Bioresource technology, 98(7):1489-93. Epub 2006/10/31.

    [12] Divakaran, Ravi, V.N. Sivasankara Pillai (2002), "Flocculation of Algae Using Chitosan," Journal of Applied Phycology, 14:419-22.

    [13] Edge, R., D.J. McGarvey, T.G. Truscott (1997), "The Carotenoids as Anti-Oxidants - a Review," Journal of Photochemistry and Photobiology, 41:189-200.

    [14] Edzwald, JK (1993), "Algae, Bubbles, Coagulants, and Dissolved Air Flotation," Water Science & Technology, 27(10):67-81.

    [15] Faucher, Onil, Bernard Coupal, Anh Leduy (1979), "Utilization of Sea Water-Urea as a Culture Medium for Spirulina Maxima," Canadian Journal of Microbiology, 25(6):752-59.

    [16] Glazer, Alexander N. (1994), "Phycobiliproteins - a Family of Valuable, Widely Used Fluorophores," Journal of Applied Phycology, 6:105-12.

    [17] Grima, E. Molina , E. -H. Belarbi, F.G. Acien Fernandez, A. Robles Medinaa, Yusuf Chisti (2003), "Recovery of Microalgal Biomass and Metabolites: Process Options and Economics," Biotechnology Advances, 20:491-515.

    [18] Grima, Emilio Molina, Jose María Fernández Sevilla, Francisco Gabriel Acién Fernández (1999), "Microalgae, Mass Culture Methods," Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology.

    [19] Hu, Qiang, Hugo Guterman, Amos Richmond (1996), "A Flat Inclined Modular Photobioreactor for Outdoor Mass Cultivation of Photoautotrophs," Biotechnology and Bioengineering, 51:51-60.

    [20] Kirk, John Thomas Osmond. Light and Photosynthesis in Aquatic Ecosystems: Cambridge university press; 1994.

    [21] Krause, G. H.; E. Weis (1991), "Chlorophyll Fluorescence and Photosynthesis: The Basics," Plant Physiol Plant Mol Biol, 42:313-49.

    [22] Lee, Seok-Joo, Sugeun Go, Gwi-Taek Jeong, Sung-Koo Kim (2011), "Oil Production from Five Marine Microalgae for the Production of Biodiesel," Biotechnology and Bioprocess Engineering, 16(3):561-66.

    [23] Lee, Tsai-yun; Mikio Tsuzuki; Toshifumi Takeuchi; Kenji Yokoyama; Isao Karube (1995), "Quantitative Determination of Cyanobacteria in Mixed Phytoplankton Assemblages by an in vivo Fluorimetric Method," Analytica Chimica Acta, 302:81-87.

    [24] Lee, Yuan-Kun (2001), "Microalgal Mass Culture Systems and Methods Their Limitation and Potential," Journal of Applied Phycology, 13:307-15.

    [25] Marquez, Facundo J.; Naomichi Nishio; Shiro Nagai (1995), "Enhancement of Biomass and Pigment Production During Growth of Spirulina Platensis in Mixotrophic Culture," Journal of Chemical Technology and Biotechnology, 62:159-64.

    [26] Martin, William; Claus Schnarrenberger (1997), "The Evolution of the Calvin Cycle from Prokaryotic to Eukaryotic Chromosomes a Case Study of Functional Redundancy in Ancient Pathways through Endosymbiosis," Current Genetics, 32:1-18.

    [27] Matis, K. A., G. P. Gallios Gallios, K. A. Kydros (1993), "Separation of Fines by Flotation Techniques," Separation Technology, 3:76-90.

    [28] Mota, Manuel , Jose A. Teixeira, Alexander Yelshin (2002), "Influence of Cell-Shape on the Cake Resistance in Dead-End and Cross-Flow Filtrations," Separation and Purification Technology, 27:137-44.

    [29] Nalewajko, Czeslawa, Brian Colman, Mary Olaveson (1997), "Effects of pH on Growth, Photosynthesis, Respiration, and Copper Tolerance of Three Scenedesmus Strains," Environmental and Experimental Botany, 37:153-60.

    [30] Ogbonda, K. H., R. E. Aminigo, G. O. Abu (2007), "Influence of Temperature and pH on Biomass Production and Protein Biosynthesis in a Putative Spirulina sp," Bioresource Technology, 98(11):2207-11. Epub 2006/11/04.

    [31] Park, J., H. F. Jin, B. R. Lim, K. Y. Park, K. Lee (2010), "Ammonia Removal from Anaerobic Digestion Effluent of Livestock Waste Using Green Alga Scenedesmus sp," Bioresource Technology, 101(22):8649-57. Epub 2010/07/29.

    [32] Perez-Garcia, O., F. M. Escalante, L. E. de-Bashan, Y. Bashan (2011), "Heterotrophic Cultures of Microalgae: Metabolism and Potential Products," Water Research, 45(1):11-36. Epub 2010/10/26.

    [33] Piorreck, Margret, Klaus-Hinnerk Baasch, Peter Pohl (1984), "Biomass Production, Total Protein, Chlorophylls, Lipids and Fatty Acids of Freshwater Green and Blue-Green Algae under Different Nitrogen Regimes," Phyrochemistry, 23(2):207-16.

    [34] Pulz, O (2001), "Photobioreactors: Production Systems for Phototrophic Microorganisms," Applied Microbiology and Biotechnology, 57(3):287-93.

    [35] Raoof, Basirath, B. D. Kaushik, Radha Prasanna (2006), "Formulation of a Low-Cost Medium for Mass Production of Spirulina," Biomass and Bioenergy, 30(6):537-42.

    [36] Redfield, Alfred C. (1958), "The Biological Control of Chemical Factors in the Environment," American Scientist, 46(3):205-21.

    [37] Reinhard, E., W. Kreis, U. Barthlen, U. Helmbold (1988), "Semicontinuous Cultivation of Digitalis Lanata Cells Production of β-Methyldigoxin in a 300-L Airlift Bioreactor," Biotechnology and Bioengineering, 34:502-08.

    [38] Renaud, S. M., H. C. Zhou, D. L. Parry, Luong-Van Thinh, K. C. Woo (1995), "Effect of Temperature on the Growth, Total Lipid Content and Fatty Acid Composition of Recently Isolated Tropical Microalgae Isochrysis sp., Nitzschia Closterium, Nitzschia Paleacea, and Commercial Species Isochrysis sp.(Clone T.ISO)," Journal of Applied Phycology, 7:595-602.

    [39] Richmond, A.,(2004),Handbook of Microalgal Culture: Biotechnology and Applied Phycology(1sted.), Oxford : Blackwell Publishing.

    [40] Rodrigues, M. S., L. S. Ferreira, A. Converti, S. Sato, J. C. de Carvalho (2011), "Influence of Ammonium Sulphate Feeding Time on Fed-Batch Arthrospira (Spirulina) platensis Cultivation and Biomass Composition with and without pH Control," Bioresource Technology, 102(11):6587-92. Epub 2011/04/22.

    [41] Rossignol, N., L. Vandanjon, P. Jaouen, F. Quemeneur (1999), "Membrane Technology for the Continuous Separation Microalgae Culture Medium Compared Performances of Cross-Flow Microfiltration and Ultrafiltration," Aquacultural Engineering, 20:191-208.

    [42] Ruiz-Marin, A., L. G. Mendoza-Espinosa, T. Stephenson (2010), "Growth and Nutrient Removal in Free and Immobilized Green Algae in Batch and Semi-Continuous Cultures Treating Real Wastewater," Bioresource Technology, 101(1):58-64. Epub 2009/08/25.

    [43] Santos, C. A., M. E. Ferreira, T. L. da Silva, L. Gouveia, J. M. Novais, A. Reis (2011), "A Symbiotic Gas Exchange between Bioreactors Enhances Microalgal Biomass and Lipid Productivities: Taking Advantage of Complementary Nutritional Modes," Journal of Industrial Microbiology and Biotechnology, 38(8):909-17. Epub 2010/09/09.

    [44] Sarada, R. , Manoj G. Pillai, G.A. Ravishankar (1999), "Phycocyanin from Spirulina sp. Influence of Processing of Biomass on Phycocyanin Yield, Analysis of Efficacy of Extraction Methods and Stability Studies on Phycocyanin," Process Biochemistry, 34:795-801.

    [45] Sobczuk, T. Mazzuca , F. Garcıa Camacho, F. Camacho Rubio, F. G. Acien Fernandez, E. Molina Grima (1999), "Carbon Dioxide Uptake Efficiency by Outdoor Microalgal Cultures in Tubular Airlift Photobioreactors," Biotechnology and Bioengineering, 67(4):465-75.

    [46] Soletto, D., L. Binaghi, A. Lodi, J. C. M. Carvalho, A. Converti (2005), "Batch and Fed-Batch Cultivations of Spirulina platensis Using Ammonium Sulphate and Urea as Nitrogen Sources," Aquaculture, 243(1-4):217-24.

    [47] Soundarapandian, P., B. Vasanthi (2008), "Effects of Chemical Parameters on Spirulina platensis Biomas Production Optimized Method for Phycocyanin Extraction," International Journal of Zoological Research, 4(1):1-11.

    [48] Straub, O., Hanspeter P.(1987), Key to Carotenoids(1sted.), Boston : Birkhäuser Verlag Basel.

    [49] Taticek, Ronald A., Murray Moo-Young, Raymond L. Legge (1991), "The Scale-up of Plant Cell Culture Engineering Considerations," Plant Cell, Tissue and Organ Culture, 24:139-58.

    [50] Tenney, Mark W., Wayne F. Echelberger, Jr., John J. Coffey, Timothy J. McAloon (1970), "Chemical Conditioning of Biological Sludges for Vacuum Filtration," Water Pollution Control Federation, 42(2):1-20.

    [51] Uduman, Nyomi, Ying Qi, Michael K. Danquah, Gareth M. Forde, Andrew Hoadley (2010), "Dewatering of Microalgal Cultures: A Major Bottleneck to Algae-Based Fuels," Journal of Renewable and Sustainable Energy, 2(1):012701.

    [52] Vasumathi, K. K., M. Premalatha, P. Subramanian (2012), "Parameters Influencing the Design of Photobioreactor for the Growth of Microalgae," Renewable and Sustainable Energy Reviews, 16(7):5443-50.

    [53] Venugopal, V., R. Prasanna, A. Sood, P. Jaiswal, B.D. Kaushik (2006), "Stimulation of Pigment Accumulation in Anabaena azollae Strains Effect of Light Intensity and Sugars," Folia Microbiol, 51(1):50-56.

    [54] Wu, Z., Y. Zhu, W. Huang, C. Zhang, T. Li, Y. Zhang, et al. (2012), "Evaluation of Flocculation Induced by Ph Increase for Harvesting Microalgae and Reuse of Flocculated Medium," Bioresource Technology, 110:496-502. Epub 2012/02/14.

    [55] Zeng, Xianhai, Michael K. Danquah, Shiduo Zhang, Xia Zhang, Mengyang Wu, Xiao Dong Chen, et al. (2012), "Autotrophic Cultivation of Spirulina platensis for CO2 Fixation and Phycocyanin Production," Chemical Engineering Journal, 183:192-97.

    [56] 黃鈺珊(2010),「複合型光生物反應器之系統開發及其在小球藻培養上之應用」,台灣,國立成功大學化學工程研究所碩士論文。

    [57] 劉翠玲,許嘉伊(2011),「藻類應用 商機無限 - 全球水產藻類發展現況與趨勢」,台灣經濟研究月刊,第三十四卷第三期,頁43-49。

    [58] 闕鴻達(2011),千金難買藻知道:神奇的微藻 (pp.1-192),台北:大康出版社。

    [59] 續光清(1996),食品化學 (pp.1-220),北京:徐氏基金會,世界圖書出版公司。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE