簡易檢索 / 詳目顯示

研究生: 楊晴雯
Yang, Ching-Wen
論文名稱: MAPLE: 透過多面向提示學習提升可解釋性推薦中的評論生成
MAPLE: Enhancing Review Generation with Multi-Aspect Prompt LEarning in Explainable Recommendation
指導教授: 高宏宇
Kao, Hung-Yu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 55
中文關鍵詞: 自然語言處理可解釋性推薦系統控制評論生成
外文關鍵詞: Natural Language Processing, Explainable Recommendation, Controllable Review Generation
相關次數: 點閱:56下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 可解釋型推薦任務旨在接收「使用者」和「項目」的配對,並輸出解釋以說明為什麼推薦某項目給使用者。在自然語言解釋型推薦模型的背景下,一個好的解釋應具有以下特徵:1)多樣性:對於相同的項目,模型應為不同使用者生成個性化的理由;2)事實性:推薦的特徵或內容應與項目事實相關;3)精確性:推薦的特徵應盡可能精確(而不是過於泛化)。雖然如今大部分該任務模型能生成流利且符合語法的句子,但面臨過於泛化或虛構內容的問題。為了解決這一問題,我們引入了來自基於面向的情緒分析(Aspect-based Sentiment Analysis)中“多面向"(multi-aspect)概念:我們假設餐廳領域中存在有限的多個不同的面向,如“食物品質"(food quality)或“服務"(service),提供更細緻的使用者偏好理解。在本文中,我們提出了一種簡單而有效的提示學習(prompt learning)方法,將面向作為輔助信號以提高模型對不同面向類別詞語的記憶,進而在生成解釋時提及更豐富多樣的面向詞彙。該模型框架稱為多面向提示學習模型(Multi-Aspect Prompt LEarner,簡稱 MAPLE)。我們的貢獻如下:1. MAPLE 提高了生成特徵的多樣性和精確性,我們自行發明的面向解釋性指標(aspect-wise explanability)所計算的數據也支持這個發現。2. MAPLE 生成的解釋在資料檢索領域中的「檢索-閱讀框架」retriever-reader framework)中可以被當作一個品質優秀的查詢生成器(query generator)。通過與潛在個性化檢索模型的比較,我們顯示 MAPLE 更準確地預測了面向關係並且能生成出更準確與多樣的面向詞彙(aspect term),從數據與案例研究都支持這一發現。3. 我們更新了餐廳領域的評論生成資料集,包括更高品質的面向詞語並額外標註了相關的面向類別,增強了該領域的研究。

    Explainable Recommendation task is designed to receive a pair of user and item and output explanations to justify why an item is recommended to a user. Many models treat review-generation as a proxy of explainable recommendation. Although they are able to generate fluent and grammatical sentences, they suffer from generality and hallucination issues. We propose a personalized, aspect-controlled model called Multi-Aspect Prompt LEarner (MAPLE), in which it integrates aspect category as another input dimension to facilitate the memorization of fine-grained aspect terms. Experiments on two real-world review datasets in restaurant domain show that MAPLE outperforms the baseline review-generation models in terms of text and feature diversity while maintaining excellent coherence and factual relevance. We further treat MAPLE as a retriever component in the retriever-reader frame-work and employ a Large-Language Model (LLM) as the reader, showing that MAPLE’ explanation along with the LLM’s comprehension ability leads to enriched and personalized explanation as a result. We will release the code and data in this http upon acceptance.

    摘要 i Abstract ii 誌謝 iii Table of Contents iv List of Tables vi List of Figures vii Chapter 1. Introduction 1 1.1. Explainable Recommendation 1 1.2. MAPLE: Multi-Aspect Prompt LEarner 2 Chapter 2. Related Work 4 2.1. Aspect-based Sentiment Analysis 4 2.2. Transformer and Pretrained Models 5 2.2.1. Generative Pretrained Transformer (GPT) 6 2.2.2. Prompt Tuning 6 2.3. Explainable Recommendation 7 2.3.1. Review Generation 7 2.3.2. Aspect-aware Explanation Generation 8 2.3.3. Retrieval-Augmented Generation in Review Generation 9 2.4. Motivation 10 Chapter 3. Methodology 12 3.1. Problem Setup 12 3.2. Multi-Aspect Review Segmentation 12 3.3. Automated Sentiment-Analysis Pipeline 13 3.4. MAPLE: Aspect-based Explanation Generation 15 3.5. MAPLE: Aspect Recommendation 17 3.6. Training and Inference 18 3.6.1. Two-stage Training Approach 18 3.6.2. Sequential Inference Approach 18 Chapter 4. Experiment-Setup 20 4.1. Dataset 20 4.1.1. Dataset Statistics 20 4.2. Automatic Evaluation Metrics 21 4.2.1. Factuality 21 4.2.2. Aspect-wise Explainability 22 4.2.3. Informativeness 23 4.2.4. Generation Quality 24 4.3. Comparison Methods 24 Chapter 5. Results and Analysis 26 5.1. Quantitative Analysis on Explanations 26 5.2. Ablation Study on Aspect Recommendation Strategies 26 5.3. Explainability of Aspect Prompts 29 5.4. MAPLE as a Discrete Retriever 30 Chapter 6. Discussion 32 6.1. Sentiment Correlation Analysis 32 6.2. Qualitative Case Studies 33 6.2.1. Item Feature Preciseness 34 6.2.2. Degree of Personalization 34 Chapter 7. Conclusion 41 7.1. Conclusion 41 7.2. Limitations 41 References 42

    [1] Konstantin Bauman, Bing Liu, and Alexander Tuzhilin. Aspect based recommendations: Recommending items with the most valuable aspects based on user reviews. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’17, page 717–725, New York, NY, USA, 2017. Association for Computing Machinery.
    [2] Xu Chen, Zheng Qin, Yongfeng Zhang, and Tao Xu. Learning to rank features for recommendation over multiple categories. In Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR’16, page 305–314, New York, NY, USA, 2016. Association for Computing Machinery.
    [3] Xu Chen, Yongfeng Zhang, Hongteng Xu, Yixin Cao, Zheng Qin, and Hongyuan Zha. Visually explainable recommendation. arXiv preprint arXiv:1801.10288, 2018.
    [4] Hao Cheng, Shuo Wang, Wensheng Lu, Wei Zhang, Mingyang Zhou, Kezhong Lu, and Hao Liao. Explainable recommendation with personalized review retrieval and aspect learning. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 51–64, Toronto, Canada, July 2023. Association for Computational Linguistics.
    [5] Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar, Akshay Krishnamurthy, Alex Smola, and Andrew McCallum. Go for a walk and arrive at the answer: Reasoning over paths in knowledge bases using reinforcement learning. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.
    [6] Li Dong, Shaohan Huang, Furu Wei, Mirella Lapata, Ming Zhou, and Ke Xu. Learning to generate product reviews from attributes. In Mirella Lapata, Phil Blunsom, and Alexander Koller, editors, Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 623–632, Valencia, Spain, April 2017. Association for Computational Linguistics.
    [7] Ruidan He, Wee Sun Lee, Hwee Tou Ng, and Daniel Dahlmeier. An unsupervised neural attention model for aspect extraction. In Regina Barzilay and Min-Yen Kan, editors, Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 388–397, Vancouver, Canada, July 2017. Association for Computational Linguistics.
    [8] Yizheng Huang and Jimmy Huang. A survey on retrieval-augmented text generation for large language models. arXiv preprint arXiv:2404.10981, 2024.
    [9] Yelp Inc. Yelp open dataset, 2023. Accessed: 2023-10-15.
    [10] Harsh Jhamtani, Varun Gangal, Eduard Hovy, Graham Neubig, and Taylor Berg Kirkpatrick. Learning to generate move-by-move commentary for chess games from large-scale social forum data. In Iryna Gurevych and Yusuke Miyao, editors, Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1661–1671, Melbourne, Australia, July 2018. Association for Computational Linguistics.

    [11] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault, editors, Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7871–7880, Online, July 2020. Association for Computational Linguistics.
    [12] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 9459–9474. Curran Associates, Inc., 2020.
    [13] Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. A diversity-promoting objective function for neural conversation models. In Kevin Knight, Ani Nenkova, and Owen Rambow, editors, Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 110–119, San Diego, California, June 2016. Association for Computational Linguistics.
    [14] Lei Li, Yongfeng Zhang, and Li Chen. Generate neural template explanations for recommendation. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pages 755–764, 2020.
    [15] Lei Li, Yongfeng Zhang, and Li Chen. Personalized transformer for explainable recommendation. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli, editors, Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 4947–4957, Online, August 2021. Association for Computational Linguistics.
    [16] Lei Li, Yongfeng Zhang, and Li Chen. Personalized prompt learning for explainable recommendation. ACM Transactions on Information Systems, 41(4):1–26, 2023.
    [17] Piji Li, Zihao Wang, Zhaochun Ren, Lidong Bing, and Wai Lam. Neural rating regression with abstractive tips generation for recommendation. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’17, page 345–354, New York, NY, USA, 2017. Association for Computing Machinery.
    [18] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli, editors, Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 4582–4597, Online, August 2021. Association for Computational Linguistics.
    [19] Bing Liu. Sentiment analysis and opinion mining. Springer Nature, 2022.
    [20] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing. ACM Computing Surveys, 55(9):1–35, 2023.
    [21] Bin Lu, Myle Ott, Claire Cardie, and Benjamin K. Tsou. Multi-aspect sentiment analysis with topic models. In 2011 IEEE 11th International Conference on Data Mining Workshops, pages 81–88, 2011.
    [22] Yaojie Lu, Qing Liu, Dai Dai, Xinyan Xiao, Hongyu Lin, Xianpei Han, Le Sun, and Hua Wu. Unified structure generation for universal information extraction. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 5755–5772, Dublin, Ireland, May 2022. Association for Computational Linguistics.
    [23] Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. On faithfulness and factuality in abstractive summarization. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault, editors, Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 1906–1919, Online, July 2020. Association for Computational Linguistics.
    [24] Jianmo Ni and Julian McAuley. Personalized review generation by expanding phrases and attending on aspect-aware representations. In Iryna Gurevych and Yusuke Miyao, editors, Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 706–711, Melbourne, Australia, July 2018. Association for Computational Linguistics.
    [25] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation of machine translation. In Pierre Isabelle, Eugene Charniak, and Dekang Lin, editors, Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pages 311–318, Philadelphia, Pennsylvania, USA, July 2002. Association for Computational Linguistics.
    [26] Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck,
    Yejin Choi, and Zaid Harchaoui. Mauve: measuring the gap between neural text and
    human text using divergence frontiers. In Proceedings of the 35th International Con-
    ference on Neural Information Processing Systems, NIPS ’21, Red Hook, NY, USA,
    2024. Curran Associates Inc.
    [27] Maria Pontiki, Dimitrios Galanis, Haris Papageorgiou, Ion Androutsopoulos, Suresh Manandhar, Mohammad Al-Smadi, Mahmoud Al-Ayyoub, Yanyan Zhao, Bing Qin, Orphée De Clercq, et al. Semeval-2016 task 5: Aspect based sentiment analysis. In 10th International Workshop on Semantic Evaluation (SemEval 2016), 2016.
    [28] Maria Pontiki, Dimitrios Galanis, Harris Papageorgiou, Suresh Manandhar, and Ion Androutsopoulos. Semeval-2015 task 12: Aspect based sentiment analysis. In Proceedings of the 9th international workshop on semantic evaluation (SemEval 2015), pages 486–495, 2015.
    [29] Maria Pontiki, Dimitris Galanis, John Pavlopoulos, Harris Papageorgiou, Ion Androut sopoulos, and Suresh Manandhar. SemEval-2014 task 4: Aspect based sentiment analysis. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages 27–35, Dublin, Ireland, August 2014. Association for Computational Linguistics.
    [30] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are unsupervised multitask learners, 2019.
    [31] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 21(1), jan 2020.
    [32] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. In 5th Workshop on Energy Efficient Machine Learning and Cognitive Computing @ NeurIPS 2019, 2019.
    [33] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th International Conference on World Wide Web, WWW ’01, page 285–295, New York, NY, USA,
    2001. Association for Computing Machinery.
    [34] Peijie Sun, Le Wu, Kun Zhang, Yu Su, and Meng Wang. An unsupervised aspect-aware
    recommendation model with explanation text generation. ACM Trans. Inf. Syst., 40(3), nov 2021.
    [35] Sule Tekkesinoglu and Lars Kunze. From feature importance to natural language explanations using llms with rag. arXiv preprint arXiv:2407.20990, 2024.
    [36] Laurens van der Maaten and Geoffrey E. Hinton. Visualizing data using t-sne. Journal of Machine Learning Research, 9:2579–2605, 2008.
    [37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, page 6000–6010, Red Hook, NY, USA, 2017. Curran Associates Inc.
    [38] Hai Wan, Yufei Yang, Jianfeng Du, Yanan Liu, Kunxun Qi, and Jeff Z. Pan. Target- aspect-sentiment joint detection for aspect-based sentiment analysis. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05):9122–9129, Apr. 2020.
    [39] Nan Wang, Hongning Wang, Yiling Jia, and Yue Yin. Explainable recommendation via multi-task learning in opinionated text data. In The 41st international ACM SIGIR conference on research & development in information retrieval, pages 165–174, 2018.
    [40] Tong Wu, Qingqiu Huang, Ziwei Liu, Yu Wang, and Dahua Lin. Distribution-balanced loss for multi-label classification in long-tailed datasets. In Computer Vision –ECCV 452020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IV, page 162–178, Berlin, Heidelberg, 2020. Springer-Verlag.
    [41] Fu Xianghua, Liu Guo, Guo Yanyan, and Wang Zhiqiang. Multi-aspect sentiment analysis for chinese online social reviews based on topic modeling and hownet lexicon. Knowledge-Based Systems, 37:186–195, 2013.
    [42] Zhouhang Xie, Sameer Singh, Julian McAuley, and Bodhisattwa Prasad Majumder. Factual and informative review generation for explainable recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence, pages 13816–13824, 2023.
    [43] An Yan, Zhankui He, Jiacheng Li, Tianyang Zhang, and Julian McAuley. Personalized showcases: Generating multi-modal explanations for recommendations. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 2251–2255, 2023.
    [44] W. Zhang, X. Li, Y. Deng, L. Bing, and W. Lam. A survey on aspect-based sentiment analysis: Tasks, methods, and challenges. IEEE Transactions on Knowledge & Data Engineering, 35(11):11019–11038, nov 2023.
    [45] Yongfeng Zhang and Xu Chen. Explainable recommendation: A survey and new perspectives. Found. Trends Inf. Retr., 14(1):1–101, mar 2020.
    [46] Yongfeng Zhang, Guokun Lai, Min Zhang, Yi Zhang, Yiqun Liu, and Shaoping Ma. Explicit factor models for explainable recommendation based on phrase-level sentiment analysis. In Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval, SIGIR ’14, page 83–92, New York, NY, USA, 2014. Association for Computing Machinery.
    [47] Yongfeng Zhang, Haochen Zhang, Min Zhang, Yiqun Liu, and Shaoping Ma. Do users rate or review? boost phrase-level sentiment labeling with review-level sentiment classification. In Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval, SIGIR ’14, page 1027–1030, New York, NY, USA, 2014. Association for Computing Machinery.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE