| 研究生: |
陳智崇 Chen, Chih-Chung |
|---|---|
| 論文名稱: |
發展雙向無線生醫微系統用以生理訊號之量測 Development of Bi-directional Wireless Biomicrosystem for Physiological Signal Measurements |
| 指導教授: |
陳家進
Chen, Jia-Jin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 35 |
| 中文關鍵詞: | 雙向無線遙測技術 、植入式生醫微系統 、振幅移鍵控 、負載移鍵控 |
| 外文關鍵詞: | Bi-directional telemetry, ASK, LSK, Implantable biomicrosystem |
| 相關次數: | 點閱:83 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於微機電技術和超大型積體電路技術的提昇使得生醫工程研發人員已邁向植入式生醫診療電子系統這類前瞻性的研發。近年來,植入式遙測系統已經應用於動物實驗和人體訊號的量測,植入裝置的電源供可由透膚式磁場耦合獲得;使用外部發射線圈傳送電源及命令與植入裝置進行溝通,這種方法能避開傷口感染和電池電力竭盡的危險。本研究的目的在於發展以植入式微控制器為基礎實現具雙向資料傳輸的生醫微系統,經由電磁感應測量生理訊號。此系統由兩個部分所組成︰外部模組及植入模組。外部模組包含高效率E類放大器和資料復原解調器;E類放大器傳送電源及指令資料給植入模組,解調變電路將植入模組所傳送出來的生理訊號資料解調並傳送給個人電腦進行資料的處理。植入模組包含雙通道生物信號檢測及資料擷取;所檢測的訊號在經過放大、帶通濾波及數位化後傳送至外部。為了降低在檢測訊號時從載波頻率的磁場干擾,使用兩個分開獨立的線圈做為雙向傳輸時的資料傳遞。
我們已經成功地設計、實現與測試完成了可植入式雙向無線傳輸生醫微系統的所有的玏能。振幅移鍵控(ASK)調變用以輸入指令的傳送;資料傳出的方式為負載移鍵控(LSK)調變,此種調變允許透過同一個無線射頻電磁波傳輸能量及資料。所量測的訊號具有10位元解析度且最大傳輸速度可逹 115 kbps。植入量測裝置利用離散電子元件實現在 3x4.5 cm2 矩形雙面印刷電路板上消耗功率約為 90 mW。系統的電磁感應效率在距離 3.5 公分之內可維持在 25% 以上。此植入式裝置可以進行多種神經科學研究上的動物實驗。
The advances of microelectromechanical system (MEMS) and very large scale integration (VLSI) technologies have made biomedical researchers to gear their research activities toward the development of implantable biomedical electronic devices. Recently, the implantable telemetry systems have been used for animal experiments and human measurements. The implanted device can be powered by transcutaneous magnetic coupling, by using an external transmitter coil to power and commands communicate with the implanted device. This arrangement can avoid the risk of wound infection and the exhaustion of battery life. The aim of this study is to develop an implantable microcontroller-based bi-directional wireless transmission biomicrosystem through inductive link for the physiological signal measurement. The system consists of two sub-systems: the external and implantable module. The external module includes a high efficient class-E power transmitter and a data recovering demodulator which the transmitter transmits power and commands into the implant and the demodulator recovers the recorded physiological signal data from the implant and is connected to a PC for further data processing. Two channels of biological signal sensing and data acquisition are included in the implanted module. The recorded signals were amplified, bandpass filtered, and digitized for sending outwards. To reduce the electromagnetic interference from the carrier frequency while sensing, two coils are used separately in the implant for carrying out the two-way data transmission.
The amplitude-shift keying (ASK) modulation is used for inward command transmission. For outward transmission, a load-shift keying (LSK) approach which allows wireless power and data transmission through the same RF link. The sensed signal with 10-bit resolution can achieve a maximum read-out transmission rate around 115 kbps. The implanted sensing device was implemented with a double-layered rectangular PCB in 3x4.5 cm2 by surface mount device (SMD)-type discrete components with consuming power around 90 mW. The overall systemic efficiency can reach about 25 % within the coupling distance of 3.5 cm. We have successful designed, implemented and tested all the functional blocks of the bi-directional wireless implantable biomicrosystem. This implantable device is ready for implanted animals experiment for varied neuroscience studies.
[1] J. Wessberg, C. Stambaugh, J. Kralik, P, Beck, M. Laubach, J. Chapin, J. Kim, S. Biggs, A. Srinivasan, and M. Nicholelis, “Real-time prediction of hand trajectories by ensembles of cortical neurons in primates,” Nature, pp. 361-365, 2000.
[2] S. Martel, N. Hatsapoulos, I. Hunter, J. Donoghue, J. Burgert, J. Malasek, C. Wiseman, and R.Dyer, “Development of a wireless brain implant: the telementric electrode array system project,” IEEE Int. Conf. Eng. Medicine and Biology Society, vol. 4, pp. 3594-3597, 2001.
[3] K.D. Wise, “Integrated microinstrumentation system: smart peripherals for distributed sensing and control,” IEEE Int. Solid-State Circuits Conf., pp. 126, 1993.
[4] Chung-Kai Chen, “Design of wireless data and power transmission for nerve cuff stimulation,” Masters Thesis, Institute of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan, 2002.
[5] T. Akin, K. Najafi and R. M. Bradley, “A wireless implantable multichannel digital neural recording system for a micromachined sieve electrode,” IEEE Trans. Solid-State Circuits, vol. 33, pp. 109-118, 1998.
[6] N.de N. Donaldson, L. Zhou, T. A. Perkins, M. Munih, M. Haugland and T. Sinkjaer, “Implantable telemeter for long-term electroneurographic recordings in animals and humans,” Med. Biol. Eng. Comput, vol. 41, pp. 654-664, 2003.
[7] B. Smith, P. H. Peckham, M. W. Keith, and D. D. Roscoe, “An externally powered, multichannel, implantable stimulator for versatile control of paralyzed muscle,” IEEE Trans. Biomed. Eng., vol 34, pp499-508, 1987.
[8] A. M. Leung, W. H. Ko, T. M. Spear, and J. A. Bettice, “Intracranial pressure telemetry system using semicustom integrated circuits,” IEEE Trans. Biomed. Eng., vol. 33, pp. 386-395, 1986.
[9] G.E. Loeb, F.J.R. Richmond, “BION™ implants for therapeutic and functional electrical stimulation,” Chapter in Neural Prosthesis for Restoration of Sensory and Motor Function, JK Chapin and KA Moxon, CRC Press, Boca Raton, pp. 75-99, 2000.
[10] B. Smith, Z. Tang, M. Johnson, S. Pourmehdi, M. Gazdik, J. Buckett and P. Peckham, “An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle,” IEEE Trans. Rehabil. Eng., vol. 45, pp. 463-478, 1998.
[11] G. Gudnason, J. H. Nielsen, E. Bruun and M. Haugland, “A distributed transducer system for functional electrical stimulation,” IEEE Electronics, Circuits and Systems 8th Int. Conf., vol. 1, pp. 397-400, 2001.
[12] G. Gudnason, E. Bruun, and M. Haugland, “An implantable mixed analog/digital neural stimulator circuit,” Proc., IEEE Int., Circuits and Systems, vol. 5, pp. 375-379, 1999.
[13] B. Smith, T. Zhengian, M.W. Johnson, S. Pourmehdi, M.M. Gazdik, J.R. Buckett and P.H. Peckham, “An externally powered, multichannel, implantable stimulator telemeter for control of paralyzed muscle,” IEEE Trans. Biomed. Eng., vol. 45, pp. 463-475, 1998.
[14] T. Cameron, G.E. Loeb, R.A. Peck, J.H. Schulman, P. Strojnik, and P.R. Troyk, “Micromodular implants to provide electrical stimulation of paralyzed muscles and limbs,” IEEE Trans. Biomed. Eng., vol. 44, pp. 781-790, 1997.
[15] J. Singh, R.A. Peck and G.E. Loeb, “Development of BIONTM technology for functional electrical stimulation: hermetic packaging,” IEEE Int. Conf. Eng. Medicine and Biology Society, vol. 2, pp. 1313-1316, 2001.
[16] E. Petros, M. Mileusnic, “BION2: next generation of implant for functional
electrical stimulation,” Proc. IV World Conference of Biomechanics, 2002.
[17] A. DeHennis and K. D. Wise, “A Passive telemetry based pressure sensing system ,” IEEE, EMBS Conference on, Microtechnology In Medicine and biology, 2002.
[18] W. Mokwa, U. Schnakenberg, “Mircro-transponder systems for medical applications,” IEEE Tran. Instrumentation and Measurement, vol. 50, no. 6, pp. 1551-1555, 2001.
[19] A. Dittmar, K. Najafi, “Special topic section on microtechniques, microsensors, microactuators, and microsystems,” IEEE Tran. Biomed. Eng., vol. 47, pp.1-2, 2000.
[20] M. Ghovanloo and K. Najafi, “A fully digital frequency shift keying demodulator chip for wireless biological implants,” IEEE-SSMSD, pp. 223-227, 2003
[21] C. Marschner, S. Rehfuss, D. H. Peters and R. Laur, “A novel circuit concept for PSK-demodulation in passive telemetric systems,” Microelectronics J. vol. 33, pp. 69-75, 2003.
[22] Bo-Sen Fu, “Design of bi-directional wireless communication for implantable biomicrosystem,” Masters Thesis, Institute of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan, 2002.
[23] Z. Tang, B. Smith, J.H. Schild and P.H. Peckham, “Data transmission from an implatable biotelemeter by load-shift-keying using circuit configuration modulator,” IEEE Trans. Biomed. Eng., vol. 42, pp. 524-528, 1995.
[24] B. Ziaie, M.D. Nardin, A..R. Coghlan, and K. Najafi, “A single channel implantable microstimulator for function al neuromuscular stimulation”, IEEE Trans. Biomed. Eng., vol. 44, no. 10, 1997.
[25] B. Ziaie, S. C. Rose, M. D. Nardin and K. Najafi, “Self-oscillating detuning-insensitive class-E transmitter for implantable microsystems,” IEEE Trans. Biomed. Eng. vol. 48, pp. 397-400, 2001.
[26] N. O. Sokal, “Class-E switching-mode high-efficiency tuned RF/microwave power amplifier: improved design equations,” IEEE Microwave Theory and Techniques Society Digest. vol. 2, pp. 779-782, 2000.
[27] C. M. Zierhofer and E.S. Hochmair, “The Class-E concept for efficient wide-band coupling-insensitive transdermal power and data transfer,” IEEE Int. Conf. Eng. Medicine and Biology Society, vol. 14, pp. 382-383, 1992.
[28] S. Salomons, G. T. Gunning, I. Taylor, S. R. W. Grainger, D. J. Hitchings, J. Blackhurst and J. C. Jarvis, “ASIC or PIC implantable stimulators based on semi-custom CMOS technology or low-power microcontroller architecture,” Medical Engineering and Physics, vol. 23, pp. 37-43, 2001.
[29] B. S. Solils, and M. J. Silva, “Design considerations for biomedical signal interfaces,” Design of Mixed-Mode Integrated Circuits and Applications, Third International Workshop, pp. 187-191, 1999.