| 研究生: |
謝文裕 Hsieh, Wen-Yu |
|---|---|
| 論文名稱: |
肺結核新穎性療法:以幾丁聚醣奈米微粒遞送肺泡表面蛋白D基因 A novel concept of therapy for tuberculosis: SPD gene delivery via Chitosan nanoparticle |
| 指導教授: |
王志堯
Wang, Jiu-Yao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 肺結核 、結核菌感染 、肺泡表面蛋白D 、基因遞送 、幾丁聚醣奈米微粒 |
| 外文關鍵詞: | Tuberculosis, M. tb infection, SPD, gene delivery, Chitosan nanoparticle |
| 相關次數: | 點閱:74 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
結核分枝桿菌(M. tb)是一種侵入呼吸系統的病原菌,所引起的肺結核(tuberculosis) ,每年造成全球超過200萬人的死亡。結核菌在藉由噬菌作用(phagocytosis)進入肺泡內巨噬細胞(alveolar macrophage)後,利用其作用分子(effector molecule)阻礙成熟噬菌小體(phagosomal maturation)的形成,於是結核菌便以此為侵入人體的前線基地,並在細胞內生長(intracellular growth),最後導致了肺部功能的永久性損壞,甚至致患者於死亡。截至目前為止,用以治療結核患者的藥物都是屬於抗生素(antibiotics),但以提升自體免疫力,來對抗結核感染的概念,卻從未被利用在結核用藥的開發上。另一方面,肺泡表面蛋白D(surfactant protein D, SPD),一種由肺泡第二型細胞(alveolar type II cells)所分泌的C型辨醣蛋白(C-type lectin),參與著各種抵禦呼吸道病原體侵犯肺部的免疫反應,目前已知肺泡表面蛋白D基因(SPD gene)具有單一核甘酸多型性(single nucleotide polymorphism, SNP),反映在其蛋白質結構上的第11個胺基酸殘基(residue 11)變化,將決定吾人是否易受特定感染性疾病侵擾;尤甚者,流行病學的研究亦指出,肺泡表面蛋白D第11個胺基酸殘基若為羥丁氨酸(threonine),將較易受結核菌之感染。至於不同單一核苷酸多型性下的肺泡表面蛋白D,是否會對結核菌侵入肺泡內巨噬細胞有不盡相同的抑制能力,未曾有人做此方面的研究;我們假設將可藉著遞予編碼肺泡表面蛋白D第11個特定殘基的基因,來發展治療肺結核之終極目的。在本篇研究中,我們將以幾丁聚醣(Chitosan)包覆肺泡表面蛋白D基因所形成的奈米微粒(nanoparticle),來進行基因遞送,利用幾丁聚醣包覆,除了可有效避免雙股核糖核酸酶(DNase)破壞基因,亦可有效提升肺泡第二型細胞攝入遞送基因;同時, 在此我們的結果也證明了,以幾丁聚醣遞送基因可在毫無細胞毒性(cytotoxicity)的安全性前提下,大幅提高轉染效率(transfection efficiency)。之後行有餘力,我們也將用小鼠動物實驗來證實,給予幾丁聚醣包覆肺泡表面蛋白D基因所形成的奈米微粒,可達成治療肺結核之目的。總結來說,遞送肺泡表面蛋白D基因不僅可提供肺部長久性的保護效果而具有預防感染性疾病之功能外,同時也可用在治療結核患者身上,以提升人體免疫機制的方式,與利用滅菌活性的抗生素雙管齊下,來更快速有效殲滅肺結核!
Mycobacterium tuberculosis (M. tb), a respiratory pathogen, could cause tuberculosis which is responsible for more than 2 million deaths in the world each year. After been phagocytosised by human alveolar macrophages, M. tb uses effector molecules to arrest phagosomal maturation at an early stage, resulting in its intracellular growth, and finally leading to permanent lung destruction and deadly respiratory failure. So far, all drugs applied to clinical therapy for tuberculosis belonged to antibiotics, but designed molecule for enhancing host innate immunity against M. tb infection is still not available. On the other hand, surfactant protein D (SPD), a C-type lectin that is produced in alveolar type II cells of lung, has important functions with respect to the respiratory innate immunity toward various pathogens. Up to now, four single nucleotide polymorphisms (SNP) of SPD gene have been found, and SNP of SPD at residues 11 has been confirmed to associate with infectious diseases in lung. The Thr11 homologous allele has linked with susceptibility to M. tb infection in the epidemiological study. Interestingly, our data indicate entirely different results from the previous study. Here we showed different SPD gene of SNP had diverse potential to prevent alveolar macrophages from M. tb infection, thus the delivery of SPD gene encoded specific residue 11 had possible potential in the application of clinical therapy for tuberculosis. In this study, SPD gene delivery was designed in the form of chitosan-DNA nanoparticles, so that SPD gene could be protected from DNase degradation and then be ingested easily by alveolar type II cells. Our results also showed chitosan nanoparticle could be a safe vector of gene delivery with high transfection efficiency; In the future, we will demonstrate the animal model with M. tb infection do be improved by SPD gene delivery via Chitosan nanoparticle. In conclusion, SPD gene delivery not only may support persistent lung protection, but also can be combined collocate with antibiotics to cure tuberculosis involving in both innate immunity and bactericidal activity.
Allen, M.J., Laederach, A., Reilly, P.J., and Mason, R.J. (2001). Polysaccharide recognition by surfactant protein D: novel interactions of a C-type lectin with nonterminal glucosyl residues. Biochemistry 40, 7789-7798.
Aronson, N.E., Santosham, M., Comstock, G.W., Howard, R.S., Moulton, L.H., Rhoades, E.R., and Harrison, L.H. (2004). Long-term efficacy of BCG vaccine in American Indians and Alaska Natives: A 60-year follow-up study. JAMA 291, 2086-2091.
Atochina-Vasserman, E.N., Gow, A.J., Abramova, H., Guo, C.J., Tomer, Y., Preston, A.M., Beck, J.M., and Beers, M.F. (2009). Immune reconstitution during Pneumocystis lung infection: disruption of surfactant component expression and function by S-nitrosylation. J Immunol 182, 2277-2287.
Atochina-Vasserman, E.N., Winkler, C., Abramova, H., Schaumann, F., Krug, N., Gow, A.J., Beers, M.F., and Hohlfeld, J.M. (2011). Segmental allergen challenge alters multimeric structure and function of surfactant protein D in humans. Am J Respir Crit Care Med 183, 856-864.
Botas, C., Poulain, F., Akiyama, J., Brown, C., Allen, L., Goerke, J., Clements, J., Carlson, E., Gillespie, A.M., Epstein, C., et al. (1998). Altered surfactant homeostasis and alveolar type II cell morphology in mice lacking surfactant protein D. Proc Natl Acad Sci U S A 95, 11869-11874.
Brown-Augsburger, P., Hartshorn, K., Chang, D., Rust, K., Fliszar, C., Welgus, H.G., and Crouch, E.C. (1996). Site-directed mutagenesis of Cys-15 and Cys-20 of pulmonary surfactant protein D. Expression of a trimeric protein with altered anti-viral properties. J Biol Chem 271, 13724-13730.
Cohen, H., Levy, R.J., Gao, J., Fishbein, I., Kousaev, V., Sosnowski, S., Slomkowski, S., and Golomb, G. (2000). Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene Ther 7, 1896-1905.
Comstock, G.W. (1994). Field trials of tuberculosis vaccines: how could we have done them better? Control Clin Trials 15, 247-276.
Crouch, E., Rust, K., Persson, A., Mariencheck, W., Moxley, M., and Longmore, W. (1991). Primary translation products of pulmonary surfactant protein D. Am J Physiol 260, L247-253.
Crouch, E., Rust, K., Veile, R., Donis-Keller, H., and Grosso, L. (1993). Genomic organization of human surfactant protein D (SP-D). SP-D is encoded on chromosome 10q22.2-23.1. J Biol Chem 268, 2976-2983.
Davidson, B.L., and Breakefield, X.O. (2003). Viral vectors for gene delivery to the nervous system. Nat Rev Neurosci 4, 353-364.
Davis, M.E., Chen, Z.G., and Shin, D.M. (2008). Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7, 771-782.
de la Fuente, M., Seijo, B., and Alonso, M.J. (2008). Bioadhesive hyaluronan-chitosan nanoparticles can transport genes across the ocular mucosa and transfect ocular tissue. Gene Ther 15, 668-676.
Dheda, K., Booth, H., Huggett, J.F., Johnson, M.A., Zumla, A., and Rook, G.A. (2005). Lung remodeling in pulmonary tuberculosis. J Infect Dis 192, 1201-1209.
DiAngelo, S., Lin, Z., Wang, G., Phillips, S., Ramet, M., Luo, J., and Floros, J. (1999). Novel, non-radioactive, simple and multiplex PCR-cRFLP methods for genotyping human SP-A and SP-D marker alleles. Dis Markers 15, 269-281.
Duceppe, N., and Tabrizian, M. (2010). Advances in using chitosan-based nanoparticles for in vitro and in vivo drug and gene delivery. Expert Opin Drug Deliv 7, 1191-1207.
El-Aneed, A. (2004). An overview of current delivery systems in cancer gene therapy. J Control Release 94, 1-14.
Emile, J.F., Patey, N., Altare, F., Lamhamedi, S., Jouanguy, E., Boman, F., Quillard, J., Lecomte-Houcke, M., Verola, O., Mousnier, J.F., et al. (1997). Correlation of granuloma structure with clinical outcome defines two types of idiopathic disseminated BCG infection. J Pathol 181, 25-30.
Ferguson, J.S., Martin, J.L., Azad, A.K., McCarthy, T.R., Kang, P.B., Voelker, D.R., Crouch, E.C., and Schlesinger, L.S. (2006). Surfactant protein D increases fusion of Mycobacterium tuberculosis-containing phagosomes with lysosomes in human macrophages. Infect Immun 74, 7005-7009.
Ferguson, J.S., Voelker, D.R., McCormack, F.X., and Schlesinger, L.S. (1999). Surfactant protein D binds to Mycobacterium tuberculosis bacilli and lipoarabinomannan via carbohydrate-lectin interactions resulting in reduced phagocytosis of the bacteria by macrophages. J Immunol 163, 312-321.
Ferguson, J.S., Voelker, D.R., Ufnar, J.A., Dawson, A.J., and Schlesinger, L.S. (2002). Surfactant protein D inhibition of human macrophage uptake of Mycobacterium tuberculosis is independent of bacterial agglutination. J Immunol 168, 1309-1314.
Fine, P.E. (1989). The BCG story: lessons from the past and implications for the future. Rev Infect Dis 11 Suppl 2, S353-359.
Flannagan, R.S., Cosio, G., and Grinstein, S. (2009). Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat Rev Microbiol 7, 355-366.
Floros, J., Lin, H.M., Garcia, A., Salazar, M.A., Guo, X., DiAngelo, S., Montano, M., Luo, J., Pardo, A., and Selman, M. (2000). Surfactant protein genetic marker alleles identify a subgroup of tuberculosis in a Mexican population. J Infect Dis 182, 1473-1478.
Gao, J.Q., Zhao, Q.Q., Lv, T.F., Shuai, W.P., Zhou, J., Tang, G.P., Liang, W.Q., Tabata, Y., and Hu, Y.L. (2010). Gene-carried chitosan-linked-PEI induced high gene transfection efficiency with low toxicity and significant tumor-suppressive activity. Int J Pharm 387, 286-294.
Ge, Y., Zhang, Y., He, S., Nie, F., Teng, G., and Gu, N. (2009). Fluorescence Modified Chitosan-Coated Magnetic Nanoparticles for High-Efficient Cellular Imaging. Nanoscale Res Lett 4, 287-295.
Harper, C. (2007). Tuberculosis, a neglected opportunity? Nat Med 13, 309-312.
Jean, M., Alameh, M., Buschmann, M.D., and Merzouki, A. (2011). Effective and safe gene-based delivery of GLP-1 using chitosan/plasmid-DNA therapeutic nanocomplexes in an animal model of type 2 diabetes. Gene Ther.
Jean, M., Smaoui, F., Lavertu, M., Methot, S., Bouhdoud, L., Buschmann, M.D., and Merzouki, A. (2009). Chitosan-plasmid nanoparticle formulations for IM and SC delivery of recombinant FGF-2 and PDGF-BB or generation of antibodies. Gene Ther 16, 1097-1110.
Jiang, H.L., Kwon, J.T., Kim, Y.K., Kim, E.M., Arote, R., Jeong, H.J., Nah, J.W., Choi, Y.J., Akaike, T., Cho, M.H., et al. (2007). Galactosylated chitosan-graft-polyethylenimine as a gene carrier for hepatocyte targeting. Gene Ther 14, 1389-1398.
Kay, M.A. (2011). State-of-the-art gene-based therapies: the road ahead. Nat Rev Genet 12, 316-328.
Kennington, E. (2009). Gene therapy delivers an alternative approach to Alzheimer's disease. Nat Rev Drug Discov 8, 275.
Kievit, F.M., Veiseh, O., Bhattarai, N., Fang, C., Gunn, J.W., Lee, D., Ellenbogen, R.G., Olson, J.M., and Zhang, M. (2009). PEI-PEG-Chitosan Copolymer Coated Iron Oxide Nanoparticles for Safe Gene Delivery: synthesis, complexation, and transfection. Adv Funct Mater 19, 2244-2251.
Kim, T.H., Park, I.K., Nah, J.W., Choi, Y.J., and Cho, C.S. (2004). Galactosylated chitosan/DNA nanoparticles prepared using water-soluble chitosan as a gene carrier. Biomaterials 25, 3783-3792.
Kingwell, K. (2011). Parkinson disease: Gene therapy for Parkinson disease shows promise in phase II trial. Nat Rev Neurol 7, 241.
Koping-Hoggard, M., Tubulekas, I., Guan, H., Edwards, K., Nilsson, M., Varum, K.M., and Artursson, P. (2001). Chitosan as a nonviral gene delivery system. Structure-property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther 8, 1108-1121.
Koping-Hoggard, M., Varum, K.M., Issa, M., Danielsen, S., Christensen, B.E., Stokke, B.T., and Artursson, P. (2004). Improved chitosan-mediated gene delivery based on easily dissociated chitosan polyplexes of highly defined chitosan oligomers. Gene Ther 11, 1441-1452.
Koul, A., Arnoult, E., Lounis, N., Guillemont, J., and Andries, K. (2011). The challenge of new drug discovery for tuberculosis. Nature 469, 483-490.
Lai, W.F., and Lin, M.C. (2009). Nucleic acid delivery with chitosan and its derivatives. J Control Release 134, 158-168.
Lee, K.Y., Kwon, I.C., Kim, Y.H., Jo, W.H., and Jeong, S.Y. (1998). Preparation of chitosan self-aggregates as a gene delivery system. J Control Release 51, 213-220.
Lehrman, S. (1999). Virus treatment questioned after gene therapy death. Nature 401, 517-518.
Leth-Larsen, R., Garred, P., Jensenius, H., Meschi, J., Hartshorn, K., Madsen, J., Tornoe, I., Madsen, H.O., Sorensen, G., Crouch, E., et al. (2005). A common polymorphism in the SFTPD gene influences assembly, function, and concentration of surfactant protein D. J Immunol 174, 1532-1538.
Li, X.W., Lee, D.K., Chan, A.S., and Alpar, H.O. (2003). Sustained expression in mammalian cells with DNA complexed with chitosan nanoparticles. Biochim Biophys Acta 1630, 7-18.
Liu, Q., and Muruve, D.A. (2003). Molecular basis of the inflammatory response to adenovirus vectors. Gene Ther 10, 935-940.
Maxmen, A. (2010). Fighting the monster. Nature 466, S18-19.
Mitsuyama, M., Akagawa, K., Kobayashi, K., Sugawara, I., Kawakami, K., Yamamoto, S., and Okada, Z. (2003). [Up-to-date understanding of tuberculosis immunity]. Kekkaku 78, 51-55.
Nagpal, K., Singh, S.K., and Mishra, D.N. (2010). Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull (Tokyo) 58, 1423-1430.
Ozsoy, S., Demirel, B., Albay, A., Kisa, O., Dinc, A.H., and Safali, M. (2010). Tuberculosis prevalence in forensic autopsies. Am J Forensic Med Pathol 31, 55-57.
Palmer, M.V., Whipple, D.L., Rhyan, J.C., Bolin, C.A., and Saari, D.A. (1999). Granuloma development in cattle after intratonsilar inoculation with Mycobacterium bovis. Am J Vet Res 60, 310-315.
Pantelidis, P., Lagan, A.L., Davies, J.C., Welsh, K.I., and du Bois, R.M. (2003). A single round PCR method for genotyping human surfactant protein (SP)-A1, SP-A2 and SP-D gene alleles. Tissue Antigens 61, 317-321.
Pearson, S., Jia, H., and Kandachi, K. (2004). China approves first gene therapy. Nat Biotechnol 22, 3-4.
Russell, D.G. (2007). Who puts the tubercle in tuberculosis? Nat Rev Microbiol 5, 39-47.
Rust, K., Grosso, L., Zhang, V., Chang, D., Persson, A., Longmore, W., Cai, G.Z., and Crouch, E. (1991). Human surfactant protein D: SP-D contains a C-type lectin carbohydrate recognition domain. Arch Biochem Biophys 290, 116-126.
Schlesinger, L.S., Bellinger-Kawahara, C.G., Payne, N.R., and Horwitz, M.A. (1990). Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3. J Immunol 144, 2771-2780.
Schwander, S., and Dheda, K. (2011). Human lung immunity against Mycobacterium tuberculosis: insights into pathogenesis and protection. Am J Respir Crit Care Med 183, 696-707.
Skeiky, Y.A., and Sadoff, J.C. (2006). Advances in tuberculosis vaccine strategies. Nat Rev Microbiol 4, 469-476.
Somia, N., and Verma, I.M. (2000). Gene therapy: trials and tribulations. Nat Rev Genet 1, 91-99.
Soualhine, H., Deghmane, A.E., Sun, J., Mak, K., Talal, A., Av-Gay, Y., and Hmama, Z. (2007). Mycobacterium bovis bacillus Calmette-Guerin secreting active cathepsin S stimulates expression of mature MHC class II molecules and antigen presentation in human macrophages. J Immunol 179, 5137-5145.
Soysal, A., Millington, K.A., Bakir, M., Dosanjh, D., Aslan, Y., Deeks, J.J., Efe, S., Staveley, I., Ewer, K., and Lalvani, A. (2005). Effect of BCG vaccination on risk of Mycobacterium tuberculosis infection in children with household tuberculosis contact: a prospective community-based study. Lancet 366, 1443-1451.
Strand, S.P., Lelu, S., Reitan, N.K., de Lange Davies, C., Artursson, P., and Varum, K.M. (2010). Molecular design of chitosan gene delivery systems with an optimized balance between polyplex stability and polyplex unpacking. Biomaterials 31, 975-987.
Takano, M., Nakanishi, N., Kitahara, Y., Sasaki, Y., Murakami, T., and Nagai, J. (2002). Cisplatin-induced inhibition of receptor-mediated endocytosis of protein in the kidney. Kidney Int 62, 1707-1717.
Tan, K., Cheang, P., Ho, I.A., Lam, P.Y., and Hui, K.M. (2007). Nanosized bioceramic particles could function as efficient gene delivery vehicles with target specificity for the spleen. Gene Ther 14, 828-835.
Thomas, N.J., DiAngelo, S., Hess, J.C., Fan, R., Ball, M.W., Geskey, J.M., Willson, D.F., and Floros, J. (2009). Transmission of surfactant protein variants and haplotypes in children hospitalized with respiratory syncytial virus. Pediatr Res 66, 70-73.
Unknown (1999). Fifteen year follow up of trial of BCG vaccines in south India for tuberculosis prevention. Tuberculosis Research Centre (ICMR), Chennai. Indian J Med Res 110, 56-69.
Voorhout, W.F., Veenendaal, T., Kuroki, Y., Ogasawara, Y., van Golde, L.M., and Geuze, H.J. (1992). Immunocytochemical localization of surfactant protein D (SP-D) in type II cells, Clara cells, and alveolar macrophages of rat lung. J Histochem Cytochem 40, 1589-1597.
Waehler, R., Russell, S.J., and Curiel, D.T. (2007). Engineering targeted viral vectors for gene therapy. Nat Rev Genet 8, 573-587.
Wright, J.R. (2005). Immunoregulatory functions of surfactant proteins. Nat Rev Immunol 5, 58-68.
Yumoto, R., Nishikawa, H., Okamoto, M., Katayama, H., Nagai, J., and Takano, M. (2006). Clathrin-mediated endocytosis of FITC-albumin in alveolar type II epithelial cell line RLE-6TN. Am J Physiol Lung Cell Mol Physiol 290, L946-955.
Zhang, L., Ikegami, M., Crouch, E.C., Korfhagen, T.R., and Whitsett, J.A. (2001). Activity of pulmonary surfactant protein-D (SP-D) in vivo is dependent on oligomeric structure. J Biol Chem 276, 19214-19219.
校內:2021-12-31公開