| 研究生: |
許汶仰 Syu, Wun-yang |
|---|---|
| 論文名稱: |
奈米壓痕用於覆膜材料硬度過渡行為的評估與建立 Evaluation and Model Development for Transitional Hardness Behavior Arising in the Film/Substrate |
| 指導教授: |
林仁輝
Lin, Jen-Fin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 虛擬壓痕器 、硬度 、奈米壓痕 |
| 外文關鍵詞: | Virtual indenter, Nanoindentation, hardness |
| 相關次數: | 點閱:121 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的主題為研究類鑽碳(Diamond-like carbon)分別鍍在SKH51、AL6061兩種底材上硬度的過渡行為分析。在奈米壓痕過程中,我們考慮了包含壓痕器與薄膜接觸、薄膜彎曲、薄膜與底材接觸這三種現象,對複合硬度(Composite hardness)從薄膜硬度逐漸趨近底材硬度的行為探討,並使用方程式去描述壓痕發生的過程。首先,壓痕深度可以表示成壓痕負載的函數,這個函數包含了薄膜與底材各自的負載係數(Loading coefficient)、卸載係數(Unloading coefficient)以及薄膜彎曲的等效剛性(Equivalent stiffness of the film deflection)。而藉由此函數,便可以對覆膜材料的壓痕實驗數據做準確的擬合(fitting)。我們以Sakai所提出的奈米壓痕模型為基礎,藉由一連串公式的推導,可以預測在不同壓痕器傾斜角度(Indenter inclined angle)對一塊材做壓痕實驗的負載係數、卸載係數的理論值;另一方面將提出的覆膜材料奈米壓痕模型,套用到不同負載條件下,由實驗得到的覆膜材料壓深負載圖,便可得到覆膜材料底材的負載係數以及卸載係數。在兩種不同的模型中,觀察到負載係數以及卸載係數的趨勢有極高相似性。利用負載及卸載係數將兩個模型做結合,得到在不同的壓痕深度時,對應到的覆膜材料界面虛擬壓痕器傾斜角度(Virtual indenter inclined angle)。最後與MTS所得到的底材硬度權重比做比較發現,兩種覆膜材料其相同虛擬壓痕器傾斜角度所對應到底材權重比非常吻合。證實虛擬壓痕器傾斜角度的確與覆膜材料硬度過渡性質有極大的關聯性。
The transitional hardness behavior of the two composite materials (DLC/SKH51,DLC/AL) is the topic in this study. Using the Nanoindentation concept of M. Sakai, and combine some basic Nanoindentation formulas, we can get two new equations. If the true hardness, reduce modulus are known, the loading and unloading coefficient, which vary with the incline angle of indenter can be got by these two equation. A model considering the deformation of a composite material, including the contact between film and indenter, film inflection, the contact between interface and substrate, was proposed. The indentation depth was expressed as a function of indentation load, which is relate to the loading and unloading coefficients of film, substrate and the film deflection stiffness. Good agreement revealed between the P-h results of two composite materials and the proposed equation of this composite materials model if properly choosing the parameter. There is a very similar trend between the loading/unloading coefficient of bulk in the different incline angle of indenter and the loading/unloading coefficient of substrate of composite materials in the different nondimensional depth. From this relationship, we can get the virtual indenter angle in interface if the nondimensional depth is known. Using MTS-Nano-indenter-XP system, the hardness weighting factor of substrate in different nondimsional depth can be available. Finally, we find the same hardness weighting factor of substrate in different composite materials always correspond to the same virtual indenter angle. So, the virtual indenter angle must play a critical role in the transitional hardness behavior of the two composite materials in this study.
1."微機電系統技術與應用," 行政院國科會精密儀器發展中心出版, 2003.
2.Hertz H., Journal für die reine und angewandte Mathematik, Vol.92, pp.156, 1882.
3.Boussinesq J., "Applications des Potentiels a l' etude de equilibre et du Mouvement des Solides Elastiques," Gauthier-Villars, Paris, 1885.
4.Sneddon I. N., "The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile," International Journal of Engineering Science, Vol.3, pp.47-57, 1965.
5.Pharr G. M., Oliver W. C. and Brotzen F. R., "On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation," Journal of Materials Research, Vol.7, pp.613-617, 1992.
6.Oliver W. C. and Pharr G. M., "Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments," Journal of Materials Research, Vol.7, pp.1564-1580, 1992.
7.Suresh S. and Giannakopoulos A. E., "Determination of elastoplastic properties by instrumented sharp indentation," Scripta Materialia, Vol.40, pp.1191-1198, 1999.
8.Fischer-Cripps A. C., "Nanoindentation," Springer, 2002.
9.Nayebi A., El Abdi R., Bartier O. and Mauvoisin G., "New procedure to determine steel mechanical parameters from the spherical indentation technique," Mechanics of Materials, Vol.34, pp.243-254, 2002.
10.Taljat B., Zacharia T. and Kosel F., "New analytical procedure to determine stress-strain curve from spherical indentation data," International Journal of Solids and Structures, Vol.35, pp.4411-4426, 1998.
11.Jayaraman S., Hahn G. T., Oliver W. C., Rubin C. A. and Bastias P. C., "Determination of monotonic stress-strain curve of hard materials from ultra-low-load indentation tests," International Journal of Solids and Structures, Vol.35, pp.365-381, 1998.
12.Bückle H. and Conrad H., "The science of hardness testing and its applications," American Society for Metals, Metals Park, OH, pp.453-491, 1973.
13.Jonsson B. and Hogmark S., "Hardness measurements of thin films," Thin Solid Films, Vol.114, pp.257-269, 1984.
14.Burnett P. J. and Rickerby D. S., "The mechanical properties of wear-resistant coatings : II: Experimental studies and interpretation of hardness," Thin Solid Films, Vol.148, pp.51-65, 1987.
15.Burnett P. J. and Rickerby D. S., "The mechanical properties of wear-resistant coatings : I: Modelling of hardness behaviour," Thin Solid Films, Vol.148, pp.41-50, 1987.
16.Fabes B. D., Oliver W. C., Mckee R. A. and Walker F. J., "The determination of film hardness from the composite response of film and substrate to nanometer scale indentation," Journal of Materials Research, Vol.7, 1992.
17.Bhattacharya A. K. and Nix W. D., "Finite element simulation of indentation experiments," International Journal of Solids and Structures, Vol.24, pp.881-891, 1988.
18.陳冠維, "掃瞄式探針顯微鏡摩擦力檢測應用於不鏽鋼氮離子植佈技術之建立及材料微/奈米機械性質檢測",國立成功大學, 碩士論文, 2003.
19.Hibbeler R. C., "Mechanics of Materials," Fifth edition, 106, Prentice Hall,
20.Hugh O. P., "Handbook of Carbon, Graphite, Diamond and Fullerenes," Noyes Publications, 1993.
21.King R. B., "Elastic analysis of some punch problems for a layered medium," International Journal of Solids and Structures, Vol.23, pp.1657-1664, 1987.
22.Aw P. K., Batchelor A. W. and Loh N. L., "Structure and tribological properties of plasma nitrided surface films on Inconel 718," Surface and Coatings Technology, Vol.89, pp.70-76, 1997.
23.Pethica J. B., Hutchings R. and Oliver W. C., "Hardness measurement at penetration depth as small as 20nm," Philosophical Magazine A, Vol.48, pp.593-606, 1983.
24.Sakai M. and Nakano Y., "Elastoplastic load-depth hysteresis in pyramidal indentation," Journal of Materials Research, Vol.17, pp.2161-2173, 2002.
25.Sakai M., Shimizu S. and Ishikawa T., "The indentation load-depth curve of ceramics," Journal of Materials Research, Vol.14, pp.1471-1484, 1999.
26.Sakai M., "The Meyer hardness: A measure for plasticity?," Journal of Materials Research, Vol.14, pp.3630-3639, 1999.
27.Sakai M., "Simultaneous estimate of elastic/plastic parameters in depth-sensing indentation tests," Scripta Materialia, Vol.51, pp.391-395, 2004.
28.Page T. F., Pharr G. M., Hay J. C., Oliver W. C., Lucas B. N., Herbert E. and Riester L., "Nanoindentation characterization of coated systems: P:S2 - a new approach using the continuous stiffness technique," Materials Research Society Symposium Proceedings, 1998.
29.Wei P.-J. and Lin J.-F., "A new method developed to evaluate both the hardness and elastic modulus of a coating-substrate system," Surface and Coatings Technology, Vol.200, pp.2489-2496, 2005.
30.Schellin R., Hess G., Kühnel W., Thielemann C., Trost D., Wacker J. and Steinmann R., "Measurements of the mechanical behaviour of micromachined silicon and silicon-nitride membranes for microphones, pressure sensors and gas flow meters," Sensors and Actuators A: Physical, Vol.41, pp.287-292, 1994.
31.美國Hysitron 公司網頁,http://www.hysitron.com/
32.TriboScope User Manual
33.Li X. and Bhushan B., "A review of nanoindentation continuous stiffness measurement technique and its applications," Materials Characterization, Vol.48, pp.11-36, 2002.
34.Borodich F. M., Keer L. M. and Korach C. S., "Analytical study of fundamental nanoindentation test relations for indenters of non-ideal shapes," Nanotechnology, Vol.14, pp.803-808, 2003.
35."Nano Indenter XP user’s manual,MTS," 2001.
36.Windows B. and Savvides N., "Charged particle fluxes from planar magnetron sputtering sources," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol.4, pp.196-202, 1986.