| 研究生: |
李炳志 Li, Bing-Chih |
|---|---|
| 論文名稱: |
三軸圓錐貫入阻抗與現地土壤液化之關聯研究 The Correlation between Tri-axial Cone Penetration Resistance and the In-situ Soil Liquefaction |
| 指導教授: |
陳景文
Chen, Jing-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 160 |
| 中文關鍵詞: | 圓錐阻抗 、反覆三軸試驗 、圓錐貫入試驗 、三軸圓錐貫入試驗 、關聯性 、細粒料含量 、反覆剪應力比 |
| 外文關鍵詞: | Fines contents, CSR, Correlation, Triaxial Cone Penetration Test, Cyclic Triaxial Test, Cone resistance |
| 相關次數: | 點閱:87 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以三軸圓錐貫入試驗(Triaxial Cone Penetration Test , TCPT)求取浚填砂土在某些特定有效圍壓下,不同細粒料含量之圓錐貫入阻抗;同時以反覆三軸試驗(Cyclic Triaxial Test , CTT)求取相同條件下,試體達到初始液化時所需之反覆剪應力比,本文定義以反覆加載週期數為15之反覆剪應力比為土壤之抗液化能力,以進行兩者間之關聯性分析。試驗結果顯示,三軸圓錐貫入阻抗與土壤之抗液化強度間有良好的關聯性,並發現試體之貫入阻抗與液化阻抗,隨著無塑性粉土細粒料含量之增加,先增至最大值而後呈下降之趨勢,其最大值皆發生在細粒料含量為5%時。
再利用實驗室所得之三軸圓錐貫入阻抗和現地圓錐貫入試驗得到之錐頭阻抗進行比較,經修正覆土壓力後,尋求其關聯性。結果顯示,若現場圓錐貫入處之細粒料含量能精確取得,兩者之貫入阻抗有一良好之倍數關係。顯示三軸圓錐貫入試驗運用在模擬現地圓錐貫入試驗值得進一步研究發展。
In this study, the Triaxial Cone Penetration Test (TCPT)is used to obtain the cone resistances of reclaimed soils under specified effective confining pressures and fines contents. Meanwhile, the Cyclic Triaxial Test (CTT) is used to acquire the liquefaction resistance of the soils under same conditions. The liquefaction reistance of soils is defined as the CSR under the number of cyclic loading (Nc) equals to 15. The above cone resistances and liquefaction resistances are collected for correlations and a well correlation was found. Both cone resistances and liquefaction resistances of soils reach to the peak values as their non-plastic fines contents equal to 5 %.
Furthermore, the tri-axial cone resistances in Lab are used to correlate the field cone resistances. Through the modification against effective confining pressures, it is found that they are in a good relationship with some multiples; which indicates the study in simulating field cone resistances using tri-axial cone penetration test can be further developed.
1.Chaney, R.C.,“Saturation effects on the cyclic strength of sands,” Earthquake Engineering and Soil Dynamics, ASCE, Vol.1, pp.342-358,1978.
2.Chung, Kin Y.C., and Wong, I.H., “Liquefaction potential of soils with plastic fines,” Soil Dynamics and Engineering Conference, Southampton, pp.887-897, 1982.
3.EI Hosri, M.S., Biarez, H., Hicher, P.Y., “Liquefaction characteristics of silty clay,” Proc., 8th World Conf. on Earthquake Engrg., Prentice-Hall, Englewood Cliffs, N.J., Vol.3, pp.277-284, 1984.
4.Finn, W.D.L., Pickering, D.J., and Bransby, P.L., “Sand Liquefaction in Triaxial and Simple Shear Test,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.97, No.SM4, pp.639-659, 1971.
5.Holtz, R.D., and Kovacs, W.D., “An Introduction to Geotechnical Engineering,” Prentice Hall, Englewood Cliffs, New Jersey, pp.733,1981.
6.Ishihara, K., and Okada, Shigeru, “Effects of Stress History on Cyclic Behavior of Sand,” Soils and Foundations, Vol.18, No.4, pp.29-45, 1978.
7.Ishibashi, I.M., Sherlif, M.A., and Cheng, W.L., “The Effects of Soil Parameters on Pore Pressure Rise and Liquefaction Prediction,” Soils and Foundations, JSSMEF, Vol.22, No.1, pp.37-48, 1982.
8.Ishihara, K., Sodekawa, M., and Tanaka, Y., “Effect of Overconsolidation on Liquefaction Characteristics of Sand Containing Fine,” Dynamic Geotechnical Test, ASCE, STP654, American Society for Testing and Materials, pp.246-264, 1978.
9.Ishihara, K., “Liquefaction and Flow Failure During Earthquakes,” Geotechnique, Vol.43, No.3, pp.351-415, 1993.
10.Lee and Fitton, “Factor Affecting the Cyclic Loading Strength of Soil”, Vibration Effects of Earthquake on Soils and Foundations, ASTM, STP450, pp.71-96, 1969.
11.Marcuson, W.F., III, Ballard, R.F., JR., and Ledbetter, R.H., “Liquefaction failure of tailings dams resulting from the Near Izu Oshima earthquake, 14 and 15 January, 1978,” Proceedings, 6th Pan American Conference on Soil Mechanics and Foundation Engineering, Lima, Peru, 1979.
12.Mulilis, J.P., “The Effect of Method of Sample Preparation on the Cyclic Stress-Strain Behavior of sands,” Report No.EECR75-18, U.C., Berkeley Earthquake Engineering Research Center, 1975.
13.Mulilis, J.P., Seed, H.B., Chan, C.K., “Resistance to Liquefaction due to Sustained Pressure,” Journal of the geotechnical engineering division, Vol.103, No.GT7, July, pp.793-797, 1977.
14.Mulilis, J.P. et al., “Triaxial Testing Techniques and Sand Liquefaction,” Dynamic Geotechnical Testing, ASTM, STP654, American Society for Testing and Materials, pp.265-279, 1978.
15.NCEER, “Proceeding of NCEER Woekshop on Evaluation of Liquefaction Resistance of Soils,” USA., 1997.
16.Seed, H.B., and Idriss, I.M., “Simplified Procedure for Evaluating Soil Liquefaction Potential,” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol.97, No.SM9, pp.1249-1273, 1971.
17.Seed, H.B., Idriss, I.M., Makdisi, F.I., and Banerjee, N., “Representation of Ir-regular Stress Time Histories by Equivalent Uniform Stress Series in Liquefaction Analysis,” EERC75-29, Earthquake Engineering Research Center, University of California, Berkeley, pp.21, 1975.
18.Seed, H.B., “Evaluation of Soil Liquefaction Effects on Level Ground During Earthquakes,” Liquefaction Problems in Geotechnical Engineering Session on Soil Dynamics Committee of Geotechnical Engineering Division, ASCE, pp.1-104, 1976.
19.Suzuki and Toki, “Effect of Preshearing on Liquefaction Characteristics of Saturated Sand Subjected to Cyclic Loading,” Soils and Foundations, Vol.30, No.2, pp.33-42, 1990.
20.Tianqiang Guo, Shamsher Prakash, “Liquefaction of silts and silt-clay mixtures,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.125, pp.706-710, 1999.
21.Vaid, Y.P., Chern, J.C., and Tumi, H., “Confining Pressure, Grain Angularity and Liquefaction,” Journal of Geotechnical Engineering, ASCE, Vol.111, No.10, pp.1229-1235, 1985.
22.王統立,「高細料含量粉土細砂中CPT之標定試驗」,國立交通大學土木工程研究所,碩士論文,2000。
23.王冠彬,「含細料砂質改良土之力學性質」,國立中央大學土木工程研究所,碩士論文,2003。
24.石秉根,「顆粒粒徑對飽和砂質土壤液化相關行為影響之研究」,朝陽科技大學營建工程研究所,碩士論文,2002。
25.吳偉特,「台灣地區殺性土壤液化潛能之初步研究」,土木水力,第六卷,第二期,第39-70頁,1979。
26.吳偉特與楊騰芳,「細粒料含量在不同程度影響因素中對台灣地區沉積性砂土液化特性之研究」,土木水利,第十四卷,第三期,第59-74頁,1987。
27.吳思賢,「非塑性細料對CPT液化強度之影響」,國立高雄應用科技大學土木工程與防災科技研究所,碩士論文,2004。
28.李煜舲,「飽和砂土液化特性與孔隙水壓預估之研究」,國立交通大學土木工程研究所,碩士論文,1988。
29.李維峰,「土壤液化防治之研究與發展趨勢」,地工技術,第103期,第89-91頁,3月,2005。
30.林智偉,「無塑性細料對砂質土壤液化阻抗之研究」,國立成功大學土木工程研究所,碩士論文,2006。
31.林保全,「水位與排水條件對動力夯實成效之實驗研究」,國立成功大學土木工程研究所,碩士論文,2007。
32.范恩碩,「以九二一集集地震案例探討細料對液化潛能評估之影響」,國立成功大學土木工程研究所,博士論文,2003。
33.孫家雯,「砂土細料界定對液化強度之影響」,國立台灣大學土木工程研究所,碩士論文,2003。
34.陳名利,「以剪力模數評估砂土液化潛能之研究」,國立台灣大學土木工程研究所,碩士論文,1990。
35.陳嘉裕,「細粒料含量對砂土液化潛能之影響研究」,國立成功大學土木工程研究所,碩士論文,1999。
36.陳界文,「細粒料特性對土壤抗液化強度之影響」,國立臺灣大學土木工程研究所,碩士論文,2001。
37.陳福成,「浚填砂土水位對動力夯實成效影響之研究」,國立成功大學土木工程研究所,博士論文,2008。
38.張清秀,「黏土含量對福隆砂液化潛能之影響」,國立台灣大學土木工程研究所,碩士論文,1982。
39.張吉佐、方仲欣,「水送填土造地之探討」,地工技術,第51期,第5-20頁,9月,1995。
40.許家豪,「不同粒徑細粒料對土壤液化阻抗影響之研究」,國立成功大學土木工程研究所,碩士論文,2003。
41.梁曉光,「濱海抽砂造地工程」,中興工程,第42期,第45-62頁,1994。
42.黃振昇,「以三軸圓錐貫入試驗推估浚填砂土之抗液化強度」,國立成功大學土木工程研究所,碩士論文,2007。
43.游家豪,「低塑性細料對粉質砂土動態性質之影響」,國立成功大學土木工程研究所,碩士論文,2007。
44.楊沂恩,「細料含量及塑性指數對砂土液化影響之研究」,國立成功大學土木工程研究所,碩士論文,1984。
45.楊騰芳,「細粒料在過壓密及前期微震作用下對飽和殺性土壤液化潛能之影響」,國立台灣大學土木工程研究所,碩士論文,1986。
46.廖元憶,「臺灣西南沿海高細粒料含量沙土的探討」,國立成功大學土木工程研究所,碩士論文,2005。
47.鄭文隆,「淺談地震作用下基礎土壤液化及液化潛能評估法」,現代營建,第二卷,第一期,第89-94頁,1981。
48.簡連貴,「水力抽砂回填技術在造地工程之應用」,地工技術,第51期,第21-34頁,9月,1995。
49.戴源昱,「台灣西南部粉土質細砂CRR與qc關係之標定」,國立交通大學土木工程研究所,碩士論文,2007。
50.蘇永富,「飽和砂土液化潛能與剪力之初步研究」,國立交通大學土木工程研究所,碩士論文,1991。