| 研究生: |
謝孟樸 Hsieh, Meng-Pu |
|---|---|
| 論文名稱: |
以有限元素法分析多節頸椎退化性椎間盤疾病採用人工椎間盤合併椎間融合器對鄰近節之生物力學影響 Finite Element Analysis of Biomechanical Responses of the Adjacent Segments for the Surgical Treatment of Multi-level Degenerative Cervical Disease Using Artificial Disc Replacement or Cage Insertion |
| 指導教授: |
胡宣德
Hu, Hsuan-Teh |
| 共同指導教授: |
黃國淵
Huang, Kuo-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 有限元素法 、頸椎人工椎間盤 、椎間融合器 、生物力學 |
| 外文關鍵詞: | finite element method, cervical artificial disc, cage, biomechanics |
| 相關次數: | 點閱:95 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人體脊椎因年紀、磨損或其它各種原因導致椎間盤損壞時,椎間盤中髓核(Nucleus Pulposus)可能就會被擠壓而突出穿過纖維外環並壓迫到神經,導致頸背疼痛、上肢麻痛或感覺異常,這種症狀稱為退化性椎間盤疾病(Degenerative Disc Disease,DDD)。治療退化性椎間盤疾病有許多不同之手術方式,而不同的手術方式,均有其相應的生物力學表現。
傳統的椎間盤手術是在椎間盤切除後植入自體骨或人工骨支架,若有多節椎間盤需治療時並輔以鈦合金固定物,以達到「固定」之目的。但該節被固定後,椎間盤活動度會受限制,需由鄰近節之椎間盤增加活動度加以代償,近來有研究發現此種治療方式會造成鄰近節椎間盤壓力增加、活動量增加進而提高「鄰近節病變」的發生率。本研究即是以有限元素模型模擬人工椎間盤或是椎間融合器輔以鈦合金鋼板治療頸椎退化性椎間盤疾病,以期望能達到減低鄰近節負擔之效果,減低鄰近節病變的發生率。
本研究使用電腦斷層掃瞄與有限元素法套裝軟體,建立完整之頸椎模型,取頸椎第二節至頸椎第七節,並對三節椎間盤(IVD C3-4、IVD C4-5、IVD C5-6)以人工椎間盤配合椎間融合器或者是椎間融合器輔以鋼板治療,觀察脊椎在伸展、前彎、側彎、扭轉等四種動作下,整體頸椎之活動度、應力變化,以及對鄰近節之生物力學影響。
Human’s intervertebral disc will degenerate as time goes by. The nucleus pulposus in disc will be crushed and protrudes through the annulus fibrosus and pressure to the Ligament. This disease which called” Degenerative Disc Disease,DDD”.Traditional intervertebral disc surgery is using cage or anterior plate.But generally considere that spinal fusion surgery will cause the degeneration of adjacent segment. So in recent years,the invention of artificial disc attempt to prevent the degeneration of adjacent segment.This research discuss multisegmental cervical degenerative disease treated by artificial disc,cage,and plate.Trying to find case that can reduce the influence of adjacent segment.This research use finite element method to simulate human,and using finite analysis software ABAQUS. All in all,we found that artificial disc in C56
will reduce the influence of adjacent segment,and plate prefer to place at C34. Detailed description in chapter 4.
[1] Prestige 人工椎間盤影片
[2] Gray H., Anatomy, descriptive and surgical: Random House Value Publishing, 1977.
[3] Nordin M., and Frankel V. H., Basic biomechanics of the musculoskeletal system: Lippincott Williams & Wilkins, 2001.
[4] Hitchon P. W., Torner J. C., Haddad S. F. et al., Management options in thoracolumbar burst fractures, Surgical Neurology, Vol. 49, No. 6, pp. 619-626, Jun, 1998.
[5] Silva M. J., Wang C., Keaveny T. M. et al., Direct and Computed tomography Thickness Measurements of The Human, Lumbar Vertebral Shell and Endplate, Bone, Vol. 15, No. 4, pp. 409-414, 2004.
[6] Bell G. H., Dunbar O., Beck J. S. et al., Variations in Strength of Vertebrae with Age and Their Relation to Osteoporosis, Calcified Tissue International, Vol. 1:75, 1967.
[7] Strayer, Lumbar Spine Surgery - A Guide to Preoperative and Postoperative Patient Care, Barbara Schweize, 2009.
[8] Natarajan, R. N., and Andersson, G. B. J., Modeling the annular incision in a herniated lumbar intervertebral disk to study its effect on disk stability, Computers & Structures, Vol. 64, No. 5/6, pp. 1291-1297, 1997
[9] Lee, C., Kim, Y. E., Lee, C.-S., Hong, Y.-M., Jung, J., and Goel, V. K. Impact response of the intevertebral disc in a finite element model, Spine, Vol. 25, pp. 2431-2439, 2000
[10] Silva, M. J., Wang, C., Keaveny, T. M., and Hayes, W. C., Direct and computed tomography thickness measurements of he human, lumbar vertebral shell and endplate, Bone, Vol. 15, No. 4, pp. 409-414, 1994
[11] Teo E.C. , Ng H.W., Evaluation of the role of ligaments, facets and disc nucleus in lower cervical spine under compression and sagittal moments using finite element method
[12] Pitzen, T., Geisler, F. H., Matthis, D.,Müller-Storz, H., Pedersen, K., and Steudel, W.-I., The influence of cancellous bone density on load sharing in human lumbar spine: a comparison between an intact and a surgically altered motion segment, European Spine Journal, Vol. 10, No. 1, pp. 23-29, 2001
[13] Goto, K., Tajima, N., Chosa, E., Totoribe, K., Kuroki, H., and Arizumi, Y., Mechanical analysis of the lumbar vertebrae in a three-dimensional finite element method model in which intradiscal pressure in the nucleus pulposus was used to establish the model, Journal of Orthopaedic Science, Vol. 7, No. 2, pp.243-246., 2002
[14] A. Polikeit, S. J. Ferguson, L. P. Nolte et al., Factors Influencing Stresses in the Lumbar Spine after the Insertion of Intervertebral Cages: Finite Element Analysis, European Spine Journal, Vol. 12, No. 4, pp. 413-420, Aug, 2003.
[15] Cheung, J. T.-M., Zhang, M., Chow, and D. H.-K., Biomechanical responses of the intervertebral joints to static and vibrational loading: a finite element study, Clinical Biomechanics, Vol. 18, pp. 790–799, 2003
[16] Natarajan R. N., and Andersson G. B. J., Modeling The Annular Incision in a Herniated Lumbar Intervertebral Disk to Study Its Effect on Disk Stability, Computers & Structures, Vol. 64, No. 5-6, pp. 1291-1297, Sep, 1997.
[17] White A. A., and Panjabi M. M., Clinical biomechanics of the spine: Lippincott, 1990.
[18] Jason Tak-Man Cheung, Ming Zhang, Daniel Hung-Kay Chow, Biomechanical responses of the intervertebral joints to static and vibrational loading: a finite element study
[19] Adams M. A., and Hutton W. C., The Effect of Posture on the Role of the Apophysea L Joints in Resisting Interverterral Compressive Forces, Journal of Bone and Joint Surgery-British Volume, Vol. 62, No. 3, pp. 358-362, 1980.
[20] Sharma M., Langrana N. A., and Rodriguez J., Role of Ligaments and Facets in Lumbar Spinal Stability, Spine, Vol. 20, No. 8, pp. 887-900, Apr, 1995.
[21] Sharma M.,. Langrana N. A., and Rodriguez J., Modeling of facet articu- lation as a nonlinear moving contact problem: Sensitivity study on lumbar facet response, Journal of Biomechanical Engineering-Transactions of the Asme, Vol. 120, No. 1, pp. 118-125, Feb, 1998.
[22] Polikeit A., Finite Element Analyses of the Lumbar Spine : Clinical Applications, 2002.
[23] Chazal J., Tanguy A., Bourges M. et al., Biomechanical Properties of Spinal Ligaments and a Histological Study of the Supraspinal Ligament in Traction, Journal of Biomechanics, Vol. 18, No. 3, pp. 167-176, 1985.
[24] Shiraziadl A., Ahmed A. M., and Shrivastava S. C., A Finite-Element Study of a Lumbar Motion Segment Subjected to Pure Sagittal Plane Moments, Journal of Biomechanics, Vol. 19, No. 4, pp. 331-350, 1986.
[25] Naira H. C. K., Computational Analysis of The Time-Dependent Bio- mechanical Behavior of The Lumbar Spine, 2004.
[26] Ruiz M. J. G., and Gonzalez L. Y. S., Comparison of Hyperelastic Material Models in the Analysis of Fabrics, International Journal of Clothing Science and Technology, Vol. 18, No. 5, pp. 314-325, 2006.
[27] Abaqus 6.11 Documentation, http://abaqus.ethz.ch:2080/v6.11/
[28] Denoziere G., Numerical Modeling of A Ligamentous Lumbar Motion Segment, pp. 55-2, 2004.
[29] Galbusera F., Biomechanics of the C5-C6 Spinal Unit Before and After Placement of a disc prosthesis, pp.254, 2006.
[30] www.synthesprodisc.com,Prodisc-C Nova. Cervical disc prosthesis to restore disc height and maintain segmental motion. Technique Guide
[31] Ahmad Faizan , Vijay K. Goel , Ashok Biyani , Steven R. Garfin , Christopher M. Bono , Adjacent level effects of bi level disc replacement, bi level fusion and disc replacement plus fusion in cervical spine- a finite element based study
[32] Stryker-Solis-Peek-cage,http://www.stryker.com/emea/Products/Spine/Cervical/SolisPEEK/index.htm#
[33] SYNTHES,Vectra. Anterior cervical plate system. Surgical technique guide
[34] Kenneth G. Budinski,Eastman Kodak Company, Building 23, 5th Floor, Kodak Park, Rochester, NY I4650 (U.S.A.),Tribological properties of titanium alloys
[35] Kong W. Z. and Goel V. K., Ability of The Finite Element Models to Predict Response of The Human Spine to Sinusoidal Vertical Vibration. SPINE Vol.28, No.17, pp.1961-1967, 2003.
[36] 劉啟台,細說材料力學[理論與題型剖析] ,博研出版社,2008
[37] 古宗達,以有限元素法分析輕度解離性腰薦椎滑脫經後方內固定手術之脊椎生物力學影響,國立成功大學土木工程研究所,2012,碩士論文.
[38] 王喻璿,以有限元素分析骨質疏鬆胸腰椎骨折經椎體整形術或後方脊椎內固定手術後之生物力學影響,國立成功大學土木工程研究所,2012,碩士論文.
[39] 林冠瑋,電腦輔助脊椎之有限元素分析,國立成功大學土木工程研究所,2008,碩士論文.
[40] 高力行,以有限元素分析退化性椎間盤疾病經腰椎手術後置入腰脊突間支架或椎籠之生物力學影響,國立成功大學土木工程研究所,2013,碩士論文.
[41] 黃友恒,以有限元素法分析骨質疏鬆症病患因胸腰椎骨折接受減壓及固定手術治療之生物力學影響,國立成功大學土木工程研究所,2013,碩士論文.
[42] 骨科主任醫師,陳榮貴,腰椎椎間盤退化性背痛(Discogenic Back Pain)介紹
[43] 陳德誠/中國醫藥大學附設醫院神經外科主治醫師,脊椎融合及非融合手術介紹,飛訊,Vol.112 ,pp.1-6, 2011
[44] Ahmad Faizan ,Vijay K. Goel, Ashok Biyani , Steven R. Garfin , Christopher M. Bono, Adjacent level effects of bi level disc replacement, bi level fusion and discreplacement plus fusion in cervical spine- a finite element based study, Clinical Biomechanics,Vol .27,pp.226-223,2012
[45] Thomas Zander, Antonius Rohlmann , Georg Bergmann, Influence of different artificial disc kinematics on spine biomechanics, Clinical Biomechanics,Vol.24,pp.135-142,2009
[46] E. Peña ,B. Calvo, M.A. Martínez, M. Doblaré, A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint, Journal of Biomechanics,Vol.39, No. 9, pp. 1686-1701,2006,