簡易檢索 / 詳目顯示

研究生: 黃煒庭
Huang, Wei-Ting
論文名稱: 使用TCAD模擬場效電晶體的低頻雜訊特性
A Study on Low Frequency Noise Characteristics of MOSFETs by TCAD Simulation
指導教授: 高國興
Kao, Kuo-Hsing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 奈米積體電路工程碩士博士學位學程
MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 49
中文關鍵詞: 低頻雜訊模擬低溫電晶體
外文關鍵詞: TCAD, LFN, MOSFETs, Temperature
相關次數: 點閱:130下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著電子元件科技技術發展,以及奈米元件尺寸越縮越小,通道內載子的震盪對設備性能的影響變得更加明顯。低頻雜訊這種現象通常是通道內的自由載子被氧化層或者氧化層介面的缺陷捕捉或發射,然後引起電特性的變化。 由於縮小器件尺寸時LFN對電特性的影響更為重要,因此LFN成為主流研究主題。
    在本論文中,我們介紹了不同種類的低頻雜訊,接著我們利用三種不同的變數:溫度、陷阱濃度及陷阱的位置,來討論這些低頻雜訊(熱雜訊、G-R雜訊及閃爍雜訊)的特性。這份研究主要仰賴於 Sentaurus TCAD 來模擬與比較不同變數對低頻雜訊的影響。雜訊變得更加強大,可以歸因於較高的載子遷移率改善電流的結果。陷阱密度在不同的位置分佈顯示同樣的結果。導電性因為電子的捕捉/發射運動,這表示有越多的載子更可能被捕捉或發射,結果電流的震盪幅度會更劇烈,使得雜訊的功率譜密度變得更強大。

    With the scaling down on CMOS technologies, the impact of discrete channel carrier on device performance becomes more apparent. The low frequency noise (LFN) phenomenon is commonly related to the behaviors of one or some carriers that have been captured and emitted by the oxide or interface traps and then causes the variation of electrical characteristics. Because the impact of LFN on electrical characteristics is more important when scaling down the device, LFN have become a mainline research topic.
    In this study, we have organized and analyzed the noise definition and various type of low frequency noise. Finally, we have simulated the low frequency property (thermal noise, G-R noise and flicker noise) in MOSFET with different temperatures and various traps density which are distributed at various location (interface of Oxide/Si, bulk silicon and gate oxide) in the device by a TCAD tool. Trap densities distributing at different location show the same result that the conductivity of device becomes worse because of trapped/de-trapped behavior, which means more carriers, higher probability of trapping/de-trapping and then the stronger noise.

    摘要 i Abstract ii 誌謝 iii Contents iv Figure Captions vi Chapter I 1 1.1 CMOS Scaling 2 1.2 The Influence of Low Frequency Noise in CMOS 2 1.3 Motivation 3 1.4 Organization and outline of the Thesis 5 Chapter II 6 2.1 Introduction 6 2.1.1 Noise Definition 6 2.1.2 Fundamental Noise Sources 7 2.2 Low frequency Noise 7 2.2.1 Thermal Noise 8 2.2.2 Shot Noise 8 2.2.3 White Noise 9 2.2.4 Generation-Recombination Noise 9 2.2.5 Flicker Noise (1/f Noise) 11 Chapter III 14 3.1 Introduction to Synopsys Sentaurus TCAD 14 3.1.1 Impedance Field Method 14 3.1.2 Process Steps and Parameter values 18 3.2 Results and Discussion 21 Chapter IV 39 References 40 Appendix I Commend lines for SProcess simulation 41 Appendix II Commend lines for SDevice simulation 45 Appendix III Parameters used in SDevice simulation 49

    [1] Kelin J. Kuhn, “Moore's Law Past 32nm: Future Challenges in Device Scaling”
    [2] Martin von Haartman and Mikael Östling, “Low-Frequency Noise In Advanced Mos Devices”
    [3] Jan PAVELKA and Josef ŠIKULA, “Activation Energy of RTS Noise”
    [4] Alexander A. Balandin, “Low-frequency 1/f noise in graphene devices”
    [5] Jung-Suk Goo, “High Frequency Noise in CMOS Low Noise Amplifiers”
    [6] S. M. Sze. New York: Wiley, “Physics of Semiconductor Devices”
    [7] J. B. Johnson, “Thermal agitation of electricity in conductors”
    [8] H. Nyquist, “Thermal agitation of electric charge in conductors”
    [9] W. Schottky, “Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern”
    [10] A. van der Ziel, “Noise in solid state devices and circuits”
    [11] S. Machlup, “Noise in semiconductors: spectrum of a two-parameter random signal”
    [12] M. Surdin, “Fluctuations in the thermionic current and the ‘flicker effect”
    [13] P. Dutta and P. M. Horn, “Low-frequency fluctuations in solids: 1/f noise”
    [14] M. B. Weissman, “1/f noise and other slow, nonexponential kinetics in condensed matter”
    [15] F. N. Hooge, “1/f noise is no surface effect”
    [16] F. N. Hooge and L. K. J. Vandamme, “Lattice scattering causes 1/f noise”
    [17] F. N. Hooge, “Discussion of recent experiments on 1/f noise”
    [18] J.-P. Nougier, “Fluctuations and Noise of Hot Carriers in Semiconductor Materials and Devices”
    [19] K. M. van Vliet, A. Friedmann, R. J. J. Zijlstra, A. Gisolf, and A. van der Ziel, “Noise in single injection diodes. I. A survey of methods,”
    [20] Jung-Suk Goo, “An Accurate and Efficient High Frequency Noise Simulation Technique for Deep Submicron MOSFETs”

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE