簡易檢索 / 詳目顯示

研究生: 邱詩庭
Chiu, Shih-Ting
論文名稱: 以分子動力學搭配ReaxFF勢能模擬銅矽基板化學機械研磨在不同研磨液下之奈米磨擦行為
Atomistic mechanisms of Copper and Silicon substrate CMP in different slurries by Molecular dynamics simulation using ReaxFF reactive force field
指導教授: 陳鐵城
Chen, Tei-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 88
中文關鍵詞: 分子動力學化學機械研磨平均摩擦力化學反應移除率
外文關鍵詞: Molecular dynamics, Chemical mechanical polishing, Average friction, Chemical reaction, Removing rate
相關次數: 點閱:96下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究的主要目的為探討在銅化學機械研磨製程中,設計銅矽基板與阻障層模型進行模擬,並使用二氧化矽磨粒與銅金屬導線置於不同研磨液成分的條件下,搭配不同的研磨壓力與磨耗速度,分析材料在奈米尺度下的摩擦行為與化學反應。本研究使用分子動力學與模擬化學反應的ReaxFF勢能函數,並搭配數值模擬軟體LAMMPS作為工具,分別建置於三種不同研磨液,分別是純水、純過氧化氫與雙氧水,並探討二氧化矽磨粒對銅表面在不同研磨壓力與不同磨耗速度下之奈米磨擦模擬。模擬結果顯示,無論使用何種研磨液,都可以發現到兩種磨耗機制,分別是銅原子與銅原子之間的化學反應,以及銅原子與氧原子之間的化學反應。當研磨液為雙氧水時,化學反應所生成的化合物最為豐富且最劇烈,發現了氫氧根離子與氧氣的生成,銅表面被研磨液潤滑過後,更利於奈米磨擦行為。因此,雙氧水研磨液研磨能力是最強的,平均摩擦力也最大,同時顯示出共價鍵的數量會影響摩擦力的大小,以及Stick-slip現象。另外觀察到研磨壓力會影響到銅原子的移除率,遠大於改變磨耗速度。而對於平均摩擦力來說,可以發現隨著研磨壓力的增加或是磨耗速度的提升,皆可以提升平均摩擦力。最後探討出雙氧水研磨液在不同濃度下,有助於提高銅原子移除率,結果顯示,當過氧化氫濃度提高時,不但無法增加銅原子的移除率,反倒會有下降的趨勢。以及測試雙氧水研磨液濃度,分別為30%、50%及70%時的磨耗效果,結果顯示,雙氧水研磨液濃度為30%時是最好的。

    This thesis utilizes the design of the copper-silicon substrate and the barrier layer model for the simulation of the copper chemical mechanical polishing process(CMP). By using molecular dynamics and ReaxFF potential energy functions for simulating chemical reactions were used, and the numerical simulation software LAMMPS was used as a tool to build three different slurries, namely pure water, pure hydrogen peroxide, and hydrogen peroxide, and to simulation of nano-friction of abrasive particles on copper surface under different grinding pressures and different wear rates. The simulation results show that no matter what kind of slurry is used, two wear mechanisms can be found. Therefore, the polishing ability of the hydrogen peroxide slurry is the strongest, and the average friction force is also the largest. In addition, it was observed that the grinding pressure affects the removal rate of copper atoms much more than changing the wear rate. As for the average friction force, it can be found that the average friction force can be improved with the increase of the grinding pressure or the increase of the wear speed. Finally, it is discussed that the hydrogen peroxide slurry can help to improve the removal rate of copper atoms under different concentrations. And test the wear effect when the concentration of the hydrogen peroxide slurry is 30%, 50% and 70%, respectively. The results show that the concentration of the hydrogen peroxide slurry is 30% is the best.

    摘要 I Extended Abstract III 目錄 XVI 表目錄 XIX 圖目錄 XX 符號說明 XXIII 第一章 緒論 1 1-1前言 1 1-2文獻回顧 2 1-2-1分子動力學之文獻回顧 2 1-2-2奈米摩擦之文獻回顧 3 1-2-3化學機械研磨之文獻回顧 4 1-2-4阻障層之文獻回顧 7 1-3研究動機與目的 8 1-4本文架構 9 第二章 分子動力學之基本原理 10 2-1分子動力學之基本理論與假設 10 2-2分子動力學之求解方法 11 2-3分子間作用力 14 2-4截斷半徑與近鄰列表方法 15 2-4-1截斷半徑 15 2-4-2近鄰列表法 16 2-5勢能函數之簡介 19 2-5-1二體勢能函數 19 2-5-2多體勢能函數 21 2-6系統初始條件之設定 26 2-6-1初始速度 26 2-6-2系綜 26 2-6-3系統之溫度修正 28 2-6-4週期型邊界條件 29 2-7無因次化 30 2-8原子級應變 31 第三章 模擬架構與分析方法 32 3-1模擬軟體之簡介 32 3-2初始模型之簡介 32 3-2-1二氧化矽磨粒與銅矽基板之模型設計 33 3-2-2各研磨液之模型 35 3-2-3模型接合 36 3-3模擬流程 38 3-4模擬結果分析 41 3-4-1化學反應 41 3-4-2磨耗程度 41 3-4-3摩擦力 42 第四章 結果與討論 43 4-1各研磨液平衡後的化學反應 43 4-1-1無研磨液 43 4-1-2純水研磨液 44 4-1-3純過氧化氫研磨液 45 4-1-4雙氧水研磨液 47 4-2磨耗分析 48 4-2-1銅原子與銅原子斷鍵 49 4-2-2銅原子與氧原子斷鍵 55 4-3比較不同研磨液 61 4-4比較不同摩擦力 63 4-5比較不同壓力 65 4-6比較不同速度 69 4-7比較不同濃度之雙氧水研磨液 72 第五章 結論與未來展望 80 5-1結論 80 5-2未來展望 82 參考文獻 83

    [1]J. H. Irving and J. G. Kirkwood, "The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics", The Journal of Chemical Physics, vol. 18, no. 6, pp. 817-829, 1950.
    [2]B. J. Alder and T. E. Wainwright, "Studies in molecular dynamics. I. General method", The Journal of Chemical Physics, vol. 31, no. 2, pp. 459-466, 1959.
    [3]J. B. Gibson, A. N. Goland, M. Milgram, and G. H. Vineyard, "Dynamics of radiation damage", Physical Review, vol. 120, pp. 1229-1253, 1960.
    [4]A. Rahman, "Correlations in the motion of atoms in liquid argon", Physical Review, vol. 136, pp. 405-441, 1964.
    [5]G. Ciccotti and W. G. Hoover, "Molecular-dynamics simulation of statistical-mechanical systems", North Holland, pp. 622, 1986.
    [6]M. P. Allen and D. J. Tildesley, "Computer simulation of liquids", Oxford, Claredon, 1987.
    [7]J. M. Haile, "Molecular dynamics simulation elementary methods", New York: Wiley, 1993.
    [8]L. Verlet, "Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules", Physical Review, vol. 159, pp. 98-103, 1967.
    [9]B. Quentrec and C. J. J. o. C. P. Brot, " New method for searching for neighbors in molecular dynamics computations," Journal of Computational Physics, vol. 159, no. 1, p. 98, 1967.
    [10]D. J. Auerbach, W. Paul, A. F. Bakker, C. Lutz, W. E. Rudge, and F. F. Abraham, "A special purpose parallel computer for molecular dynamics: motivation, design, implementation, and application", The Journal of Physical Chemistry, vol. 91, pp. 4881-4890, 1987.
    [11]G. S. Grest, B. Dünweg, and K. Kremer, "Vectorized link cell Fortran code for molecular dynamics simulations for a large number of particles", Computer Physics Communications, vol. 51, no. 3, pp. 269-285, 1989.
    [12]D. Dowson (1998). History of tribology. London: Professional Engineering Publishing.
    [13]G. Amontoms, "De la resistance causée dans les machines," Mem. Acad. R. A, pp. 275-282, 1699.
    [14]F. P. Bowden and D. Tabor (2001). The Friction and Lubrication of Solids. Kettering: Clarendon Press.
    [15]M. H. Müser, "Rigorous field-theoretical approach to the contact mechanics of rough elastic solids," Physical Review Letter, vol. 100, p. 055504, 2008.
    [16]B. N. J. Persson, "Theory of rubber friction and contact mechanics," The Journal of Chemical Physics, vol. 115, pp. 3840-3861, 2001.
    [17]J. Greenwood and J. Williamson, "Contact of nominally flat surfaces," Proceeding of Royal Socity of London. Series A. Mathematical and Physical Science, vol. 295, pp. 300-319, 1966.
    [18]Y. Mo, K. T. Turner, and I. Szlufarska, "Friction laws at the nanoscale," Nature, vol. 457, pp. 1116-1119, 2009.
    [19]J. Gao, W. D. Luedtke, D. Gourdon, M. Ruths, J. N. Israelachvili and U. Landman, "Frictional forces and Amontons' law: from the molecular to the macroscopic scale," J. Phys. Chem. B. 108, pp. 3410–3425, 2004.
    [20]P. Spijker, G. Anciaux and J. F. Molinari, "Relations between roughness, temperature and dry sliding friction at the atomic scale," Tribology international, 59, pp. 222-229, 2013.
    [21]S. Zhang, T. B. Ma, A. Erdemir and Q. Y. Li, "Tribology of two-dimensional materials: from mechanisms to modulating strategies," Materials Today, vol. 26, 2019.
    [22]L. C. Zhang, K. L. Johnson and W. C. D. Cheong, "A molecular dynamics study of scale effects on the friction of single-asperity contacts," Tribology Letters, vol. 10, No. 1-2, 2001.
    [23]J. Song and D. Srolovitz, "Atomistic simulation of multicycle asperity contact," Acta Materialia, vol. 55, pp. 4759–4768, 2007.
    [24]J. F. Molinari, R. Aghababaei, T. Brink, L. Frérot, and E. Milanese, "Adhesive wear mechanisms uncovered by atomistic simulations," Friction 6(3), pp. 245-259, 2018.
    [25]A. I. Vakis, et al. "Modeling and simulation in tribology across scales: An overview," Tribology International, Vol. 125, pp. 169–199, 2018.
    [26]E. Milanese, T. Brink, R. Aghababaei, and J. F. Molinari, "Emergence of self-affine surfaces during adhesive wear," Nature Communications, vol. 10, No. 1116, 2019.
    [27]L. Si, D. Guo, J. Luo, X. Lu, and G. Xie, "Abrasive rolling effects on material removal and surface finish in chemical mechanical polishing analyzed by molecular dynamics simulation," Journal of Applied Physics, vol. 109, 2011.
    [28]V. T. Nguyen and T. H. Fang, "Molecular dynamics simulation of abrasive characteristics and interfaces in chemical mechanical polishing," Applied Surface Science, vol. 509, 2020.
    [29]J. Wen; T. Ma; X. Lu; W. Zhang; Adri C.T. van Duin, "Atomic Insights into Material Removal Mechanisms in Si and Cu Chemical Mechanical Polishing Processes: ReaxFF Reactive Molecular Dynamics Simulations," ICPT ,2017.
    [30]X. Guo, X. Wang, Z. Jin and R. Kang, "Atomistic mechanisms of Cu CMP in aqueous H2O2: Molecular dynamics simulations using ReaxFF reactive force field," Computational Materials Science, vol. 155, pp. 476-482, 2018.
    [31]Zhuoying Shi, Zhuji Jin, Xiaoguang Guo, Xiaolin Shi, Jiang Guo, " Interfacial friction properties in diamond polishing process and its molecular dynamic analysis," Diamond and Related Materials, 2019.
    [32]Lou Youxin, Wang Jiyan, Zhang Huaijin, Li Qiang, Yan Qingfeng, Ma. Zhaohui, Dai Yuanjing, Study on chemical mechanical polishing of Cu single crystal wafer prepared by Czochralski Method, 2017.
    [33]O. van der Straten, Y. Zhu, and E. Eisenbraun, A. Kaloyeros, " Thermal and electrical barrier performance testing of ultrathin atomic layer deposition tantalum-based materials for nanoscale copper metallization," IEEE International Interconnect Technology Conference(IITC), pp. MR-4, 2002.
    [34]Shi You, He Ren, Mehul Naik, Lu Chen, Feng Chen, Carmen Leal Cervantes, Xiangjing Xie, and Keyvan Kashefizadeh, " Selective Barrier for Cu Interconnect Extension in 3nm Node and Beyond," IEEE International Interconnect Technology Conference(IITC), pp. MR-4, 2021.
    [35]David Dornfeld, "Modeling of CMP". Laboratory from Manufacturing Automation, 2005.
    [36]Chun-Li Lo, Kirby K. H. Smithe, Ruchit Mehta, Sunny Chugh, Eric Pop, and Zhihong Chen, "Atomically Thin Diffusion Barriers for Ultra-Scaled Cu Interconnects Implemented by 2D Materials," IEEE International Reliability Physics Symposium (IRPS), pp. MR-4, 2017.
    [37]R. W. Hockney and J. W. Eastwood, "Computer Simulations Using Particles," CRC Press, 1981.
    [38]A. C. T. van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard, "ReaxFF: a reactiveforce field for hydrocarbons, "J. Phys. Chem. A, vol .105, pp. 9396–9409, 2001.
    [39]T. P. Senftle, S. Hong, M. M. Islam and S. B. Kylasa, "The ReaxFF reactive force-field: development, applications and future directions," npj Computational Materials,vol.2,15011.1-14,2016.
    [40]S. Yuan, X. Guo, M. Lu, Z. Jin, R. Kang, D. Guo, Diamond nanoscale surface processing and tribochemical wear mechanism, Diam. Relat. Mater. 94 (2019) 8–13.
    [41]J. Wen, T. Ma, W. Zhang, A.C.T. van Duin, X. Lu, Atomistic mechanisms of Si chemical mechanical polishing in aqueous H2O2: ReaxFF reactive molecular dynamics simulations, 2019.
    [42]X. Guo, S. Yuan, X. Wang, Z. Jin, R. Kang, Atomistic mechanisms of chemical mechanical polishing of diamond (1 0 0) in aqueous H2O2/pure H2O: molecular dynamics simulations using reactive force field (ReaxFF), 2019.
    [43]J. Wen, T. Ma, W. Zhang, Adri C. T. van Duin, "Atomistic Insights into Cu Chemical Mechanical Polishing Mechanism in Aqueous Hydrogen Peroxide and Glycine: ReaxFF Reactive Molecular Dynamics Simulations",J.Phys.Chem ,vol. 123 ,pp. 26467-26474, 2019.
    [44]X. Guo, X. Wang, Z. Jin and R. Kang, "Atomistic mechanisms of Cu CMP in aqueous H2O2: Molecular dynamics simulations using ReaxFF reactive force field," Computational Materials Science, vol. 155, pp. 476-482, 2018.
    [45]S. Yuan, X. Guo , Q. Mao, "Effects of pressure and velocity on the interface friction behavior of diamond utilizing ReaxFF simulations",International Journal of Mechanical Sciences,vol. 191 ,106096.1-12,2021.
    [46]R. Bennewitz, T. Gyalog, M. Guggisberg, M. Bammerlin, E. Meyer, and H.-J. Güntherodt , " Atomic-scale stick-slip processes on Cu(111)" , Phys. Rev. B ,vol 60 ,1999.
    [47]A. Schirmeisen, L. Jansen, and H. Fuchs , "Tip-jump statistics of stick-slip friction" , Phys. Rev. B ,vol .71 ,245403.1-7,2005.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE