簡易檢索 / 詳目顯示

研究生: 陳麗芳
Chen, Li-Fang
論文名稱: TLE2 isoforms在大腸直腸癌形成之特性探討
Characterization of TLE2 isoforms in colon cancer formation
指導教授: 呂增宏
Leu, Tzeng-Horng
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 71
中文關鍵詞: 大腸直腸癌isoformTLE2
外文關鍵詞: isoforms, TLE2, colon cancer
相關次數: 點閱:76下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • TLE2全名為Transducin-like enhancer of split,隸屬於Gro/TLE family中的一員,他們作為一種transcriptional corepressor 並且藉由和許多可以和DNA結合的轉錄因子進行交互作用進而調控下游蛋白。此家族在哺乳動物中從發現至今已經有六位成員(TLE1~6),有愈來愈多的證據顯示他們在調控脊椎或非脊椎動物細胞分化上扮演著重要的角色,其中包括神經、肌肉骨骼、造血細胞的發育。他們參與在許多分化和生存的訊息傳遞路徑上, 顯示著這個蛋白質在生物體內的重要性。根據我們實驗室的研究指出,p97Eps8參與在大腸直腸癌細胞的生長與惡化中,而Gro/TLE2 protein為之前利用yeast-two hybrid 篩選出一系列會和p97Eps8有交互作用的蛋白質之ㄧ,因此我們建立了一個假設:Eps8和TLE2的交互作用在大腸直腸癌的形成和生長也許扮演了一個重要的角色。首先我們利用RT-PCR分析在不同的大腸直腸癌細胞株中TLE2基因的表現,發現在這些細胞株中除了存在有wild type TLE2,還同時存在數種isoform,我們從中找到了四種比wild type TLE2還要短isoforms ( TLE2 i-1、i-2、i-3、i-4 )。為了要了解TLE2在細胞轉型上所扮演的角色,我們在NIH3T3 cell以及293T cell中大量表達TLE2以及isoforms進行soft agar assay,發現他們並不會促進NIH3T3 形成colony,反而還有些微的抑制現象;而在293T中他們會抑制Eps8所促進的colony formation,以上的結果顯示TLE2也許在細胞中所扮演的是抑制細胞轉型的蛋白質。

    TLE2 ( Transducin-like Enhancer of split 2) is a member of Gro/TLE family and might function as a corepressor together with a variety of DNA-binding proteins. There are six members (TLE1~6) in this family. Increasing evidence has indicated that Gro/TLE proteins play important roles during the regulation of numberous cell-differentiation events (including neuronal development, skelectogenesis, myogenesis and hematopoiesis ) in both invertebrates and vertebrates. Moreover, Gro/TLE is involved in several signal–transducin cascades, implying that this family members play important role in cellular development and survival. Our previous studies indicated that p97Eps8 participates in colon cancer progression. Since TLE2 was identified as one of its interacting proteins by yeast-two hybrid screening, we hypothesized that the interaction between Eps8 and TLE2 may play an important role in cancer formation. To address this issue, we utilized RT-PCR to analyze TLE2 gene expression in various colon cancer cell lines. We found that there are several TLE2 isoforms existing in these cells (TLE2 i-1、i-2、i-3、i-4). Furthermore, these isoforms were expressed variously in colon tumor specimens. To study the role of TLE2 in cell transformation, we transiently expressed TLE2 isoforms in NIH3T3, 293T and Ha-Ras inducible 7-4 cells. We found TLE2 as well as its isoforms could inhibit colony formatin of 293T cells, and 7-4 cells in soft agar. These findings suggested that TLE2 might play an inhibitory role in cell transformation.

    中文摘要 3 英文摘要 5 縮寫檢索表 9 第一章 緒論 12 第二章 實驗材料與方法 25 第一節 實驗材料 26 第二節 實驗方法 28 第三章 實驗結果 37 第四章 討論 43 第五章 圖表 49 參考文獻 62 自述 70

    Allen, T., van Tuyl, M., Iyengar, P., Jothy, S., Post, M., Tsao, M. S., and Lobe, C. G. (2006). Grg1 acts as a lung-specific oncogene in a transgenic mouse model. Cancer Res 66, 1294-1301.
    2. Berardi, M. J., Sun, C., Zehr, M., Abildgaard, F., Peng, J., Speck, N. A., and Bushweller, J. H. (1999). The Ig fold of the core binding factor alpha Runt domain is a member of a family of structurally and functionally related Ig-fold DNA-binding domains. Structure 7, 1247-1256.
    3. Biesova, Z., Piccoli, C., and Wong, W. T. (1997). Isolation and characterization of e3B1, an eps8 binding protein that regulates cell growth. Oncogene 14, 233-241.
    4. Brantjes, H., Roose, J., van De Wetering, M., and Clevers, H. (2001). All Tcf HMG box transcription factors interact with Groucho-related co-repressors. Nucleic Acids Res 29, 1410-1419.
    5. Buscarlet, M., and Stifani, S. (2007). The 'Marx' of Groucho on development and disease. Trends Cell Biol 17, 353-361.
    6. Cai, Y., Brophy, P. D., Levitan, I., Stifani, S., and Dressler, G. R. (2003). Groucho suppresses Pax2 transactivation by inhibition of JNK-mediated phosphorylation. EMBO J 22, 5522-5529.
    7. Castagnino, P., Biesova, Z., Wong, W. T., Fazioli, F., Gill, G. N., and Di Fiore, P. P. (1995). Direct binding of eps8 to the juxtamembrane domain of EGFR is phosphotyrosine- and SH2-independent. Oncogene 10, 723-729.
    8. Chen, G., and Courey, A. J. (2000). Groucho/TLE family proteins and transcriptional repression. Gene 249, 1-16.
    9. Chen, P. C., Kuraguchi, M., Velasquez, J., Wang, Y., Yang, K., Edwards, R., Gillen, D., Edelmann, W., Kucherlapati, R., and Lipkin, S. M. (2008). Novel roles for MLH3 deficiency and TLE6-like amplification in DNA mismatch repair-deficient gastrointestinal tumorigenesis and progression. PLoS Genet 4, e1000092.
    10. Chitnis, A. B. (2006). Keeping single minded expression on the straight and narrow. Mol Cell 21, 450-452.
    11. Choi, C. Y., Kim, Y. H., Kim, Y. O., Park, S. J., Kim, E. A., Riemenschneider, W., Gajewski, K., Schulz, R. A., and Kim, Y. (2005). Phosphorylation by the DHIPK2 protein kinase modulates the corepressor activity of Groucho. J Biol Chem 280, 21427-21436.
    12. Courey, A. J., and Jia, S. (2001). Transcriptional repression: the long and the short of it. Genes Dev 15, 2786-2796.
    13. Dang, J., Inukai, T., Kurosawa, H., Goi, K., Inaba, T., Lenny, N. T., Downing, J. R., Stifani, S., and Look, A. T. (2001). The E2A-HLF oncoprotein activates Groucho-related genes and suppresses Runx1. Mol Cell Biol 21, 5935-5945.
    14. Dasen, J. S., Barbera, J. P., Herman, T. S., Connell, S. O., Olson, L., Ju, B., Tollkuhn, J., Baek, S. H., Rose, D. W., and Rosenfeld, M. G. (2001). Temporal regulation of a paired-like homeodomain repressor/TLE corepressor complex and a related activator is required for pituitary organogenesis. Genes Dev 15, 3193-3207.
    15. Dehni, G., Liu, Y., Husain, J., and Stifani, S. (1995). TLE expression correlates with mouse embryonic segmentation, neurogenesis, and epithelial determination. Mech Dev 53, 369-381.
    16. Dintilhac, A., and Bernues, J. (2002). HMGB1 interacts with many apparently unrelated proteins by recognizing short amino acid sequences. J Biol Chem 277, 7021-7028.
    17. Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L., and Karsenty, G. (1997). Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89, 747-754.
    18. Eastman, Q., and Grosschedl, R. (1999). Regulation of LEF-1/TCF transcription factors by Wnt and other signals. Curr Opin Cell Biol 11, 233-240.
    19. Eberhard, D., Jimenez, G., Heavey, B., and Busslinger, M. (2000). Transcriptional repression by Pax5 (BSAP) through interaction with corepressors of the Groucho family. Embo J 19, 2292-2303.
    20. Fazioli, F., Minichiello, L., Matoska, V., Castagnino, P., Miki, T., Wong, W. T., and Di Fiore, P. P. (1993). Eps8, a substrate for the epidermal growth factor receptor kinase, enhances EGF-dependent mitogenic signals. Embo J 12, 3799-3808.
    21. Fisher, A. L., and Caudy, M. (1998). Groucho proteins: transcriptional corepressors for specific subsets of DNA-binding transcription factors in vertebrates and invertebrates. Genes Dev 12, 1931-1940.
    22. Flores-Saaib, R. D., and Courey, A. J. (2000). Analysis of Groucho-histone interactions suggests mechanistic similarities between Groucho- and Tup1-mediated repression. Nucleic Acids Res 28, 4189-4196.
    23. Gallo, R., Provenzano, C., Carbone, R., Di Fiore, P. P., Castellani, L., Falcone, G., and Alema, S. (1997). Regulation of the tyrosine kinase substrate Eps8 expression by growth factors, v-Src and terminal differentiation. Oncogene 15, 1929-1936.
    24. Gao, X., Chandra, T., Gratton, M. O., Quelo, I., Prud'homme, J., Stifani, S., and St-Arnaud, R. (2001). HES6 acts as a transcriptional repressor in myoblasts and can induce the myogenic differentiation program. J Cell Biol 154, 1161-1171.
    25. Gasperowicz, M., and Otto, F. (2005). Mammalian Groucho homologs: redundancy or specificity? J Cell Biochem 95, 670-687.
    26. Gratton, M. O., Torban, E., Jasmin, S. B., Theriault, F. M., German, M. S., and Stifani, S. (2003). Hes6 promotes cortical neurogenesis and inhibits Hes1 transcription repression activity by multiple mechanisms. Mol Cell Biol 23, 6922-6935.
    27. Grbavec, D., Lo, R., Liu, Y., and Stifani, S. (1998). Transducin-like Enhancer of split 2, a mammalian homologue of Drosophila Groucho, acts as a transcriptional repressor, interacts with Hairy/Enhancer of split proteins, and is expressed during neuronal development. Eur J Biochem 258, 339-349.
    28. Grbavec, D., and Stifani, S. (1996). Molecular interaction between TLE1 and the carboxyl-terminal domain of HES-1 containing the WRPW motif. Biochem Biophys Res Commun 223, 701-705.
    29. Hasson, P., Egoz, N., Winkler, C., Volohonsky, G., Jia, S., Dinur, T., Volk, T., Courey, A. J., and Paroush, Z. (2005). EGFR signaling attenuates Groucho-dependent repression to antagonize Notch transcriptional output. Nat Genet 37, 101-105.
    30. Hasson, P., Muller, B., Basler, K., and Paroush, Z. (2001). Brinker requires two corepressors for maximal and versatile repression in Dpp signalling. EMBO J 20, 5725-5736.
    31. Hasson, P., and Paroush, Z. (2007). Crosstalk between the EGFR and other signalling pathways at the level of the global transcriptional corepressor Groucho/TLE. Br J Cancer 96 Suppl, R21-25.
    32. Inada, M., Yasui, T., Nomura, S., Miyake, S., Deguchi, K., Himeno, M., Sato, M., Yamagiwa, H., Kimura, T., Yasui, N., et al. (1999). Maturational disturbance of chondrocytes in Cbfa1-deficient mice. Dev Dyn 214, 279-290.
    33. Jan, Y., Matter, M., Pai, J. T., Chen, Y. L., Pilch, J., Komatsu, M., Ong, E., Fukuda, M., and Ruoslahti, E. (2004). A mitochondrial protein, Bit1, mediates apoptosis regulated by integrins and Groucho/TLE corepressors. Cell 116, 751-762.
    34. Javed, A., Guo, B., Hiebert, S., Choi, J. Y., Green, J., Zhao, S. C., Osborne, M. A., Stifani, S., Stein, J. L., Lian, J. B., et al. (2000). Groucho/TLE/R-esp proteins associate with the nuclear matrix and repress RUNX (CBF(alpha)/AML/PEBP2(alpha)) dependent activation of tissue-specific gene transcription. J Cell Sci 113 ( Pt 12), 2221-2231.
    35. Ju, B. G., Solum, D., Song, E. J., Lee, K. J., Rose, D. W., Glass, C. K., and Rosenfeld, M. G. (2004). Activating the PARP-1 sensor component of the groucho/ TLE1 corepressor complex mediates a CaMKinase IIdelta-dependent neurogenic gene activation pathway. Cell 119, 815-829.
    36. Karlsson, T., Songyang, Z., Landgren, E., Lavergne, C., Di Fiore, P. P., Anafi, M., Pawson, T., Cantley, L. C., Claesson-Welsh, L., and Welsh, M. (1995). Molecular interactions of the Src homology 2 domain protein Shb with phosphotyrosine residues, tyrosine kinase receptors and Src homology 3 domain proteins. Oncogene 10, 1475-1483.
    37. Kim, I. S., Otto, F., Zabel, B., and Mundlos, S. (1999). Regulation of chondrocyte differentiation by Cbfa1. Mech Dev 80, 159-170.
    38. Kishan, K. V., Scita, G., Wong, W. T., Di Fiore, P. P., and Newcomer, M. E. (1997). The SH3 domain of Eps8 exists as a novel intertwined dimer. Nat Struct Biol 4, 739-743.
    39. Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., Shimizu, Y., Bronson, R. T., Gao, Y. H., Inada, M., et al. (1997). Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89, 755-764.
    40. Leon, C., and Lobe, C. G. (1997). Grg3, a murine Groucho-related gene, is expressed in the developing nervous system and in mesenchyme-induced epithelial structures. Dev Dyn 208, 11-24.
    41. Lepourcelet, M., and Shivdasani, R. A. (2002). Characterization of a novel mammalian Groucho isoform and its role in transcriptional regulation. J Biol Chem 277, 47732-47740.
    42. Leu, T. H., Yeh, H. H., Huang, C. C., Chuang, Y. C., Su, S. L., and Maa, M. C. (2004). Participation of p97Eps8 in Src-mediated transformation. J Biol Chem 279, 9875-9881.
    43. Linderson, Y., Eberhard, D., Malin, S., Johansson, A., Busslinger, M., and Pettersson, S. (2004). Corecruitment of the Grg4 repressor by PU.1 is critical for Pax5-mediated repression of B-cell-specific genes. EMBO Rep 5, 291-296.
    44. Maa, M. C., Hsieh, C. Y., and Leu, T. H. (2001). Overexpression of p97Eps8 leads to cellular transformation: implication of pleckstrin homology domain in p97Eps8-mediated ERK activation. Oncogene 20, 106-112.
    45. Maa, M. C., Lai, J. R., Lin, R. W., and Leu, T. H. (1999). Enhancement of tyrosyl phosphorylation and protein expression of eps8 by v-Src. Biochim Biophys Acta 1450, 341-351.
    46. Maa, M. C., Lee, J. C., Chen, Y. J., Chen, Y. J., Lee, Y. C., Wang, S. T., Huang, C. C., Chow, N. H., and Leu, T. H. (2007). EPS8 Facilitates Cellular Growth and Motility of Colon Cancer Cells by Increasing the Expression and Activity of Focal Adhesion Kinase. J Biol Chem 282, 19399-19409.
    47. Malave, T. M., and Dent, S. Y. (2006). Transcriptional repression by Tup1-Ssn6. Biochem Cell Biol 84, 437-443.
    48. Mallo, M., Franco del Amo, F., and Gridley, T. (1993). Cloning and developmental expression of Grg, a mouse gene related to the groucho transcript of the Drosophila Enhancer of split complex. Mech Dev 42, 67-76.
    49. Marcal, N., Patel, H., Dong, Z., Belanger-Jasmin, S., Hoffman, B., Helgason, C. D., Dang, J., and Stifani, S. (2005). Antagonistic effects of Grg6 and Groucho/TLE on the transcription repression activity of brain factor 1/FoxG1 and cortical neuron differentiation. Mol Cell Biol 25, 10916-10929.
    50. Matoskova, B., Wong, W. T., Nomura, N., Robbins, K. C., and Di Fiore, P. P. (1996). RN-tre specifically binds to the SH3 domain of eps8 with high affinity and confers growth advantage to NIH3T3 upon carboxy-terminal truncation. Oncogene 12, 2679-2688.
    51. Matoskova, B., Wong, W. T., Salcini, A. E., Pelicci, P. G., and Di Fiore, P. P. (1995). Constitutive phosphorylation of eps8 in tumor cell lines: relevance to malignant transformation. Mol Cell Biol 15, 3805-3812.
    52. McLarren, K. W., Lo, R., Grbavec, D., Thirunavukkarasu, K., Karsenty, G., and Stifani, S. (2000). The mammalian basic helix loop helix protein HES-1 binds to and modulates the transactivating function of the runt-related factor Cbfa1. J Biol Chem 275, 530-538.
    53. Milili, M., Gauthier, L., Veran, J., Mattei, M. G., and Schiff, C. (2002). A new Groucho TLE4 protein may regulate the repressive activity of Pax5 in human B lymphocytes. Immunology 106, 447-455.
    54. Miyasaka, H., Choudhury, B. K., Hou, E. W., and Li, S. S. (1993). Molecular cloning and expression of mouse and human cDNA encoding AES and ESG proteins with strong similarity to Drosophila enhancer of split groucho protein. Eur J Biochem 216, 343-352.
    55. Miyoshi, H., Shimizu, K., Kozu, T., Maseki, N., Kaneko, Y., and Ohki, M. (1991). t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc Natl Acad Sci U S A 88, 10431-10434.
    56. Nakaya, H. I., Beckedorff, F. C., Baldini, M. L., Fachel, A. A., Reis, E. M., and Verjovski-Almeida, S. (2007). Splice variants of TLE family genes and up-regulation of a TLE3 isoform in prostate tumors. Biochem Biophys Res Commun 364, 918-923.
    57. Nuthall, H. N., Husain, J., McLarren, K. W., and Stifani, S. (2002a). Role for Hes1-induced phosphorylation in Groucho-mediated transcriptional repression. Mol Cell Biol 22, 389-399.
    58. Nuthall, H. N., Joachim, K., Palaparti, A., and Stifani, S. (2002b). A role for cell cycle-regulated phosphorylation in Groucho-mediated transcriptional repression. J Biol Chem 277, 51049-51057.
    59. Nuthall, H. N., Joachim, K., and Stifani, S. (2004). Phosphorylation of serine 239 of Groucho/TLE1 by protein kinase CK2 is important for inhibition of neuronal differentiation. Mol Cell Biol 24, 8395-8407.
    60. Otto, F., Thornell, A. P., Crompton, T., Denzel, A., Gilmour, K. C., Rosewell, I. R., Stamp, G. W., Beddington, R. S., Mundlos, S., Olsen, B. R., et al. (1997). Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89, 765-771.
    61. Parkhurst, S. M. (1998). Groucho: making its Marx as a transcriptional co-repressor. Trends Genet 14, 130-132.
    62. Reis, E. M., Nakaya, H. I., Louro, R., Canavez, F. C., Flatschart, A. V., Almeida, G. T., Egidio, C. M., Paquola, A. C., Machado, A. A., Festa, F., et al. (2004). Antisense intronic non-coding RNA levels correlate to the degree of tumor differentiation in prostate cancer. Oncogene 23, 6684-6692.
    63. Ren, B., Chee, K. J., Kim, T. H., and Maniatis, T. (1999). PRDI-BF1/Blimp-1 repression is mediated by corepressors of the Groucho family of proteins. Genes Dev 13, 125-137.
    64. Sasai, Y., Kageyama, R., Tagawa, Y., Shigemoto, R., and Nakanishi, S. (1992). Two mammalian helix-loop-helix factors structurally related to Drosophila hairy and Enhancer of split. Genes Dev 6, 2620-2634.
    65. Scita, G., Nordstrom, J., Carbone, R., Tenca, P., Giardina, G., Gutkind, S., Bjarnegard, M., Betsholtz, C., and Di Fiore, P. P. (1999). EPS8 and E3B1 transduce signals from Ras to Rac. Nature 401, 290-293.
    66. Scita, G., Tenca, P., Areces, L. B., Tocchetti, A., Frittoli, E., Giardina, G., Ponzanelli, I., Sini, P., Innocenti, M., and Di Fiore, P. P. (2001). An effector region in Eps8 is responsible for the activation of the Rac-specific GEF activity of Sos-1 and for the proper localization of the Rac-based actin-polymerizing machine. J Cell Biol 154, 1031-1044.
    67. Shipp, M. A., Ross, K. N., Tamayo, P., Weng, A. P., Kutok, J. L., Aguiar, R. C., Gaasenbeek, M., Angelo, M., Reich, M., Pinkus, G. S., et al. (2002). Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 8, 68-74.
    68. Song, H., Hasson, P., Paroush, Z., and Courey, A. J. (2004). Groucho oligomerization is required for repression in vivo. Mol Cell Biol 24, 4341-4350.
    69. Stifani, S., Blaumueller, C. M., Redhead, N. J., Hill, R. E., and Artavanis-Tsakonas, S. (1992). Human homologs of a Drosophila Enhancer of split gene product define a novel family of nuclear proteins. Nat Genet 2, 119-127.
    70. Swingler, T. E., Bess, K. L., Yao, J., Stifani, S., and Jayaraman, P. S. (2004). The proline-rich homeodomain protein recruits members of the Groucho/Transducin-like enhancer of split protein family to co-repress transcription in hematopoietic cells. J Biol Chem 279, 34938-34947.
    71. Turner, C. A., Jr., Mack, D. H., and Davis, M. M. (1994). Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell 77, 297-306.
    72. Wang, W., Wang, Y. G., Reginato, A. M., Glotzer, D. J., Fukai, N., Plotkina, S., Karsenty, G., and Olsen, B. R. (2004). Groucho homologue Grg5 interacts with the transcription factor Runx2-Cbfa1 and modulates its activity during postnatal growth in mice. Dev Biol 270, 364-381.
    73. Wong, W. T., Carlomagno, F., Druck, T., Barletta, C., Croce, C. M., Huebner, K., Kraus, M. H., and Di Fiore, P. P. (1994). Evolutionary conservation of the EPS8 gene and its mapping to human chromosome 12q23-q24. Oncogene 9, 3057-3061.
    74. Yao, J., Lai, E., and Stifani, S. (2001). The winged-helix protein brain factor 1 interacts with groucho and hes proteins to repress transcription. Mol Cell Biol 21, 1962-1972.
    75. Yao, J., Liu, Y., Husain, J., Lo, R., Palaparti, A., Henderson, J., and Stifani, S. (1998). Combinatorial expression patterns of individual TLE proteins during cell determination and differentiation suggest non-redundant functions for mammalian homologs of Drosophila Groucho. Dev Growth Differ 40, 133-146.
    76. Zhang, H., and Emmons, S. W. (2002). Caenorhabditis elegans unc-37/groucho interacts genetically with components of the transcriptional mediator complex. Genetics 160, 799-803.
    77. Zhang, H., Levine, M., and Ashe, H. L. (2001). Brinker is a sequence-specific transcriptional repressor in the Drosophila embryo. Genes Dev 15, 261-266.

    下載圖示 校內:2018-08-06公開
    校外:2018-08-06公開
    QR CODE