簡易檢索 / 詳目顯示

研究生: 蕭家豪
Hsiao, Jia-Hao
論文名稱: 以視覺為基礎之腕關節型機器人拍擊控制系統之設計與實現
Design and Implementation of a Vision-Based Paddle Juggling Control System using the Carpal Wrist Robot
指導教授: 何明字
Ho, Ming-Tzu
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 214
中文關鍵詞: 拍擊耍弄腕關節型機器人視覺伺服系統卡門濾波器
外文關鍵詞: Paddle juggling, Carpal wrist robot, Visual servo control, Kalman filter
相關次數: 點閱:165下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在利用腕關節型機器人結合立體影像視覺系統,建構一個以視覺為基礎的拍擊系統。選用腕關節型機器人的原因在於它的自由度與構造相似於人類的手腕,運動上有高度的靈巧性,由於對稱且並聯式的架構,使其具有較高的負載承受能力。立體影像視覺系統中,利用兩個影像感測器模擬人類雙眼,依據拋體的色彩資訊進行目標物擷取,利用卡門濾波器針對拋體的軌跡進行估測,並利用質點拋體運動學對球體落點進行預測,以供機器人決定拍擊球體的時機、位置、速度與姿態。本論文透過模擬分析並且建構硬體實驗平台進行實作,驗證整體系統之效能,最後,影像視覺系統確實可以將落點資訊估算出來,並由腕關節型機器人完成拍擊的動作,且能持續拍擊球回彈至固定高度。

    The main objective of this thesis is to design and implement a paddle juggling system using a stereo vision system and a carpal wrist robot. The carpal wrist robot is chosen because of its superior dexterity and similarity to the human wrist and it has three degree of freedom. As a result of its symmetric parallel architecture, it has a large payload capacity. In the stereo vision system, two image sensors are used to provide stereo vision. The stereo vision system is able to track the ball according to its color information. A Kalman filter is then used to estimate the dynamics of the ball and predict its future trajectory. Based on the dynamics of the projectile estimated by Kalman filter, the carpal wrist robot can determine the timing, velocity, position and posture for paddling the ball. Through simulation and experiments, this thesis has demonstrated the effectiveness of the designed system.

    摘要 I Extend Abstract II 誌謝 VII 目錄 VIII 圖目錄 XII 表目錄 XIX 第一章 緒論 1-1 研究背景與動機 1-1 1-2 研究目的 1-2 1-3 研究步驟 1-5 1-4 相關文獻回顧 1-7 1-5 論文結構 1-11 第二章 相機模型與參數校正 2-1 前言 2-1 2-2 針孔成相模型 2-1 2-3 座標平移 2-4 2-4 相機參數校正 2-6 2-5 多相機空間幾何與物體座標計算 2-20 第三章 腕關節型機器人介紹與運動分析 3-1 前言 3-1 3-2 腕關節型機器人介紹 3-1 3-3 運動學分析 3-3 3-3-1 正向運動分析 3-7 3-3-2 逆向運動分析 3-11 第四章 基礎動力學與接觸力學簡介 4-1 前言 4-1 4-2 牛頓運動定律 4-1 4-3 碰撞 4-2 4-3-1 恢復係數 4-4 4-3-2 正碰撞 4-7 4-3-3 偏心碰撞 4-9 4-4 偏心碰撞影響球與擊球板之偏移 4-12 4-5 接觸力學應用 4-15 4-5-1連續接觸力模型之赫茲接觸理論 4-16 4-5-2連續接觸力模型之赫茲接觸理論 4-18 第五章 質點軌跡預測 5-1 前言 5-1 5-2 卡門濾波器 5-1 5-3 質點拋體運動學 5-9 第六章 擊球控制器設計與模擬結果 6-1 前言 6-1 6-2 拍擊策略 6-1 6-2-1垂直擊球 6-2 6-2-2修正距離擊球 6-10 6-3 永磁式直流馬達數學模型與參數識別 6-16 6-4 擊球控制器設計 6-23 6-5 使用MapleSim建構腕關節型機器人系統 6-33 第七章 機構設計及製作與系統軟硬體架構 7-1 前言 7-1 7-2 腕關節型機器人設計及製作 7-1 7-3 整體系統硬體架構 7-5 7-4 影像感測器模組 7-6 7-5 DM6437影像處理模組 7-7 7-6 FPGA數位邏輯模組 7-13 7-7 DSP數位訊號處理控制模組 7-14 7-8 PWM馬達驅動模組 7-15 第八章 實驗結果 8-1 前言 8-1 8-2 系統實驗硬體架設 8-1 8-3 影像視覺系統實驗結果 8-3 8-3-1影像視覺系統擷取實驗 8-3 8-3-2拋體落點預測結合卡門濾波器實驗 8-5 8-4 PID控制器驗證 8-9 8-5 腕關節型機器人控制實驗結果 8-13 8-6 拍擊系統實驗結果 8-19 第九章 結論與未來展望 9-1 結論 9-1 9-2 未來展望 9-1 參考文獻 Ref-1 附錄 A-1

    [1] A. A. Rizzi and D. E. Koditschek, “Further Progress in Robot Juggling: Solvable Mirror Laws,” Proceedings of IEEE International Conference on Robotics and Automation, pp. 2935-2940, 1994.
    [2] A. Nakashima, Y. Sugiyama, and Y. Hayakawa, “Paddle Juggling by Robot Manipulator with Visual Servo,” Robot Manipulators, Marco Ceccarelli (Ed.), ISBN: 978-953-7619-06-0, InTech, pp. 425-440, 2008.
    [3] P. Kulchenko and E. Todorov, “First-exit Model Predictive Control of Fast Discontinuous Dynamics: Application to Ball Bouncing,” Proceedings of IEEE International Conference on Robotics and Automation, pp. 2144-2151, 2011.
    [4] S. L. Canfield, Development of the Carpal Wrist: A Symmetric, Parallel-Architecture Robotic Wrist, Dissertation, Virginia Polytechnic Institute and State University, 1997.
    [5] S. L. Canfield, C. F. Reinholtz, R. J. Salerno, and A. J. Ganino, “Spatial, Parallel-Architecture Robotic Carpal Wrist,” U.S. Patent 5699695, 1997.
    [6] J. L. Barron, D. J. Fleet, and S. S. Beachemin, “Performance of Optical Flow Techniques,” International Journal of Computer Vision, pp. 43-77, 1994.
    [7] K. P. Horn and G. Schunk, “Determine Optical Flow,” Artificial Intelligence,Vol. 17, pp. 185-203, 1981.
    [8] D. Lucas and T. Kanade, “An Iterative Image Registration Technique with an Application to Stereo Vision,’’ proceedings of Seventh International Conference on Computer Vision and Pattern Recognition, pp. 674-679, 1981.
    [9] D. J. Dailey, F. W. Cathey, and S. Pumrin, “An Algorithm to Estimate Mean Traffic Speed Using Uncalibrated Cameras,” IEEE Transactions on Intelligent Transportation Systems, Vol. 1, No. 2, pp. 98-107, 2000.
    [10] D. Murray and A. Basu, “Motion Tracking with an Active Camera,” IEEE Transactions on Pattern Analysis and Machine Intelligent, Vol. 16, No. 5 , pp. 449-459, 1994.
    [11] V. Vezhnevets, V. Sazonov, and A. Andreeva, “A Survey on Pixel-Based Skin Color Detection Techniques,” proceedings of the International Conference on Computer Graphics, pp. 85-92, 2003.
    [12] K. Deguchi, H. Sakural, and S. Ushida, “A Goal Oriented Just-In-Time Visual Servoing for Ball Catching Robot Arm,” IEEE International Conference on Intelligent Robots and Systems, pp. 22-26, 2008.
    [13] J. Hall and R. Williams, “Case Study: Inertial Measurement Unit Calibration Platform,” Journal of Robotic Systems, Vol. 17, No. 11, pp. 623-632, 2000.
    [14] M. Majji and M. Diz, “Vision Based Feedback Control of a Carpal Wrist Joint,” Proceedings of AIAA Guidance, Navigation, and Control (GNC) Conference, pp. 1-18, Aug. 2013.
    [15] J. Wrobel, R. Hoyt, J. Slostad, N. Storrs, J. Cushings, T. Moser, J. St. Luise, and G. Jimmerson, “PowerCube(TM) - Enhanced Power, Propulsion, and Pointing to Enable Agile, High-Performance CubeSat Missions,” Proceedings of AIAA SPACE 2012 Conference & Exposition, pp. 1-11, Sep. 2012.
    [16] M. Buehler, D. E. Koditschek, and P. J. Kindlmann, “A Simple Juggling Robot: Theory and Experimentation,” Proceedings of 1st International Symposium on Experimental Robotics, pp. 35-73, 1990.
    [17] M. Buehler, D. E. Koditschek, and P. J. Kindlmann, “Planning and Control of Robotic Juggling and Catching Tasks,” International Journal of Robotics Research, pp. 101-118, Apr. 1994.
    [18] R. Mori, K. Hashimoto, E. Takagi, and E. Miyazaki, “Examination of Ball Lifting Task using a Mobile Robot,” Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 369-374, 2005.
    [19] P. Reist and R. D’Andrea, “Bouncing an Unconstrained Ball in Three Dimensions with a Blind Juggling Robot,” Proceedings of IEEE Conference on Robotics and Automation, pp. 1774-1781, May 2009.
    [20] R. G. Sanfelice, A. R. Teel, and R. Sepulchre, “A Hybrid Systems Approach to Trajectory Tracking Control for Juggling Systems,” Proceedings of IEEE Conference on Decision and Control, pp. 5282-5287, Dec 2007.
    [21] S. Schaal and C. G. Atkeson, “Robot Juggling: Implementation of Memory-based Learning,” IEEE Control Systems Magazine., Vol. 14, No. 1, pp. 57-71, Feb. 1994.
    [22] 楊志偉,「以視覺伺服為基礎之倒單擺系統平衡控制」,國立成功大學工程科學系碩士論文,民國九十四年七月。
    [23] 林家民,「以視覺伺服為基礎之物體追蹤系統之設計與實現」,國立成功大學工程科學系碩士論文,民國九十五年七月。
    [24] 徐嘉明,「以視覺伺服為基礎之全向移動機器人追蹤控制」,國立成功大學工程科學系碩士論文,民國九十六年七月。
    [25] 朱立銘,「以視覺伺服為基礎之球與板系統追蹤平衡控制」,國立成功大學工程科學系碩士論文,民國九十七年七月。
    [26] 蔡任右,「以視覺為基礎之複雜背景下物體追蹤控制系統之設計與實現」,國立成功大學工程科學系碩士論文,民國九十八年七月。
    [27] 顏忠逸,「即時物體追蹤之立體視覺導引全向移動機器人之研製」,國立成功大學工程科學系碩士論文,民國九十八年七月。
    [28] 張居強,「以視覺伺服為基礎之舉球控制系統之研製」,國立成功大學工程科學系碩士論文,民國九十八年七月。
    [29] 簡彰億,「以DSP為基礎於複雜背景中之視覺引導全像機器人之研製」,國立成功大學工程科學系碩士論文,民國九十九年七月。
    [30] 林柏瑋,「以視覺為基礎之擊球控制系統之設計與實現」,國立成功大學工程科學系碩士論文,民國九十九年七月。
    [31] 鄭文勝,「利用順滑模態控制之球與球系統穩定化」,國立成功大學工程科學系碩士論文,民國一○○年七月。
    [32] 楊宗諭,「以顏色為基礎之多相機追蹤控制系統設計與實現」,國立成功大學工程科學系碩士論文,民國一○一年七月。
    [33] 王翊,「以影像為基礎之拋體軌跡預測及攔接」,國立成功大學工程科學系碩士論文,民國一○四年七月。
    [34] M. Bratt, C. Smith, and H. I. Christensen, “Minimum Jerk Based Prediction of User Actions for a Ball Catching Task,” Proceedings of the International Conference on Intelligent Robots and Systems, pp. 2710-2716, 2007.
    [35] S. L. Altman, Rotations, Quaternions, and Double Groups, Dover Publications, 1986.
    [36] K. M. Walker, Applied Mechanics, Prentice Hall, 1999.
    [37] K. L. Johnson, Contact Mechanics, Cambridge University Press, 1985.
    [38] H. R. Hertz, Ueber die Beruehrung elastischer Koerper (On Contact Between Elastic Bodies), in Gesammelte Werke (Collected Works), 1882.
    [39] H. R. Hertz, “Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung,” Annalen der Physik, Vol. 267, No. 8, pp. 983-1000, June 1887.
    [40] H. R. Hertz, “Ueber die Ausbreitungsgeschwindigkeit der electrodynamischen Wirkungen,” Annalen der Physik, Vol. 270, No. 7, pp. 551-569, May 1888.
    [41] W. Goldsmith, Impact-the Theory and Physical Bhavior of Colliding Solids, Edward Arnold Ltd, 1960.
    [42] K. H. Hunt and F. R. E. Grossley, “Coefficient of Restitution Interpreted as Damping in Vibroimpact,” ASME Journal of Applied Mechanics, pp. 440-445, June 1975.
    [43] H. M. Lankarani and P. E. Nikavesh, “A Contact Force Model with Hysteresis Damping for Impact Analysis of Multibody Systems,” ASME Journal of Mechanical Design, pp. 369-376, 1990.
    [44] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,’’ Journal of Basic Engineering, pp. 35-45, 1960.
    [45] Stokes' law, Wikipedia, https://en.wikipedia.org/wiki/Stokes%27_law
    [46] 洪介仁,「車與桿倒單擺系統之平衡控制」,國立成功大學工程科學系碩士論文,民國九十二年七月。
    [47] 蕭景隆,「線性馬達驅動控制系統之設計與實現」,國立成功大學工程科學系碩士論文,民國一○三年一月。
    [48] 1/2.5-Inch 5Mp CMOS Digital Image Sensor MT9P001 Datasheet.
    [49] Texas Instrument TMS320DM6437 Digital Media Processor Datasheet.
    [50] T. G. Sugar, M. K. McBeath, A. Suluh, and K. Mundhra, “Mobile Robot Interception using Human Navigational Principles: Comparison of Active Versus Passive Tracking Algorithms,” Autonomous Robots, Vol. 21, No. 1, pp. 43-54, 2006.
    [51] Texas Instrument TMS320F2812 Digital Signal Processor Datasheet.
    [52] A3941 Automotive Full Bridge MOSFET Driver, Allegro Inc., 2008.
    [53] R. M. Rogers, Applied Mathematics in Integrated Navigation Systems, 2nd ed., AIAA Education Series, 2003.
    [54] C. F. Kao and T. L. Chen, “Design and Analysis of an Orientation Estimation System Using Coplanar Gyro-free Inertial Measurement Unit and Magnetic Sensors,” Sensors and Actuators A, Vol. 144, pp. 251-262, 2008.
    [55] D. Mortari, M. Angelucci, and F. L. Markley, “Singularity and Attitude Estimation,” Proceedings of the 10th Annual AIAA/AAS Space Flight Mechanics Meeting, pp. 23-26, 2000.
    [56] William Rowan Hamilton,
    http://www-history.mcs.st-and.ac.uk/Biographies/Hamilton.html
    [57] H. Goldstein, Classical Mechanics, 3rd ed., Addison Wesley, 1980.
    [58] D. Koks, Explorations in Mathematical Physics, Springer, 2006.

    下載圖示 校內:2021-02-19公開
    校外:2021-02-19公開
    QR CODE