| 研究生: |
陳政霖 Chen, Jheng-Lin |
|---|---|
| 論文名稱: |
多功能不對稱球體共組裝形成可重組之特殊結構研究 Reconfigurable Superstructures Assembled by Multi-functionalized Janus Particles |
| 指導教授: |
郭昌恕
Kuo, Chang-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 多功能雙邊不對稱球體 、共同自組裝 、螢光共振能量轉移 、可逆自組裝 、重新自組裝 、置換 、三維特殊結構 、四面體 |
| 外文關鍵詞: | Specific Co-assembly, Magnetic/Fluorescence Janus particle, 3D Superstructure, Tetramer, FRET, Reversible, Re-assemble, Replacement, Reconfigurable |
| 相關次數: | 點閱:62 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,將利用經由氨基官能化改質,平均直徑大小為480nm之雙邊不對稱球體,和表面帶有硫酸根,平均直徑大小為100nm之聚苯乙烯奈米微珠進行共同自組裝。在適當的條件下,4個改質比例為1/3之雙邊不對稱球體竟可以和只有1個聚苯乙烯奈米微珠組裝形成穩定之特殊四面體結構。
擁有氨基官能化改質之雙邊不對稱球體,將再進一步在其表面分別嫁接上Atlantic Blue (AB)或是6-[2-(N,N-Dibutylamino)naphthyl]ethenyl-4'-Pyridinium Propane Sulfonate (Di-4-ANEPPS)的螢光染料後,作為螢光共振能量轉移配對中的施體與受體。由於螢光共振能量轉移對距離非常敏感,必須在施體與受體靠的夠進時才會發生。而藉由共同自組裝行為中球體與球體間的接觸,組裝形成各種特殊結構,大幅縮短了施體與受體之間的距離,進而引發了螢光能量共振轉移效果的發生。
雙邊不對稱球體及其組裝過程將透過動態光散射分析儀 (DLS)進行監測,提供顆粒的尺寸分佈和組裝的納米結構的即時資訊。同時,螢光能量共振轉移的訊號也同驗證了施體與受體球體之共同自組裝,四面體結構在水溶液中的布朗運動行為也清晰的透過暗場光學顯微鏡(DFOM)下觀察。本研究同時也針對共組裝之動態行為進行探討,其中包括四面體團簇可逆的拆解行為,利用改變顆粒濃度去影響顆粒重新的組裝時間,以及施體與受體顆粒之間在重新組裝過程中的置換行為。
In this research work, Janus particles cored with 480 nm silica spheres and partially surface-functionalized with amino groups were utilized to co-assemble with sulfate-functionalized polystyrene nanoparticles with an average diameter of 100 nm. Under the desired conditions, four of the Janus particles with the amino-moiety on 1/3 particle surface demonstrated the unique co-assembly with only one polystyrene particle which then formed a stable and well-defined tetrahedron structure, or the tetramer, with four Janus particles on the tetrahedron corners and one polystyrene particle in the center.
Janus particles with amino functionalities were also grafted with the fluorescent dye, such as Atlantic Blue (AB) or 6-[2-(N,N-Dibutyl amino)naphthyl]ethenyl-4'-Pyridinium Propane Sulfonate (Di-4-ANEPPS), served as the fluorescent resonance energy transfer (FRET) donor and acceptor, respectively. These Janus particles with donor or acceptor moieties triggered the distance-sensitive FRET, only when they were very close and co-assembled together with polystyrene particles into the desired nanostructures.
Janus particles and their assembled clusters were directly monitored by the Dynamic Light Scattering analyzer (DLS), where the sizes of particles were determined and the assembled nanostructures were calculated. The fluorescence and FRET signals also evidenced the assembly of donor and acceptor Janus particles. Meanwhile, the Brownian motions of these particles and assembled clusters in an aqueous solution were observed by the Dark Field Optical Microscope (DFOM). The dynamic motion of Janus particle co-assembly was carefully investigated in this study, including the reconfigurable assembly behavior of tetramer clusters, concentration-dependent of re-assembly, and the replacement process between donor and acceptor particles.
1. Casagrande C., Veyssie M., C. R. Acad. Sci. (Paris) 1988, 306 11, 1423.
2. GENNES, P.-G. D., Nobel Lecture. Soft Matter 1991, 21 (7), 842-845.
3. Cho, I.; Lee, K.-W., Morphology of Latex Particles Formed by Poly(methy1 Methacrylate)-Seeded Emulsion Polymerization of Styrene. Journal of Applied Polymer Science 1985, 30 (5), 1903-1926.
4. Casagrande, C.; FABRE, P.; RAPHAEL, E.; VEYSSIE, M., Janus Beads : Realization and Behaviour at Water/Oil Interfaces. EUROPHYSICS LETTERS 1989, 9 (3), 251-255.
5. Perro, A.; Reculusa, S.; Ravaine, S.; Bourgeat-Lami, E.; Duguet, E., Design and synthesis of Janus micro- and nanoparticles. Journal of Materials Chemistry 2005, 15 (35-36), 3745.
6. Walther, A.; Muller, A. H., Janus particles: synthesis, self-assembly, physical properties, and applications. Chemical reviews 2013, 113 (7), 5194-261.
7. Lattuada, M.; Hatton, T. A., Synthesis, properties and applications of Janus nanoparticles. Nano Today 2011, 6 (3), 286-308.
8. HAWKER, C. J., "Living"Free Radical Polymerization: A Unique Technique for the Preparation of Controlled Macromolecular Architectures. Accounts of chemical research 1997, 3 (9), 373-382.
9. Erhardt, R.; Bo1ker, A.; Zettl, H.; Kaya, H.; Pyckhout-Hintzen, W.; Krausch, G.; Abetz, V.; Muller, A. H. E., Janus Micelles. macromolecules 2001, 34 (4), 1069-1075.
10. Xu, H.; Erhardt, R.; Abetz, V.; Mueller, A. H. E.; Goedel, W. A., Janus Micelles at the Air/Water Interface. Langmuir 2001, 17 (22), 6787-6793.
11. Walther, A.; Muller, A. H. E., Janus particles. Soft Matter 2008, 4 (4), 663-668.
12. Chen, T.; Chen, G.; Xing, S.; Wu, T.; Chen, H., Scalable Routes to Janus Au-SiO2 and Ternary Ag-Au-SiO2 Nanoparticles. chemistry of Materials 2010, 22 (13), 3826-3828.
13. Hong, L.; Jiang, S.; Granick, S., Simple method to produce Janus colloidal particles in large quantity. Langmuir 2006, 22 (23), 9495-9499.
14. He, Y.; Li, K., Novel Janus Cu2(OH)2CO3/CuS microspheres prepared via a Pickering emulsion route. Journal of colloid and interface science 2007, 306 (2), 296-9.
15. Binks, B. P.; Fletcher, P. D. I., Particles Adsorbed at the Oil-Water Interface: A Theoretical Comparison between Spheres of Uniform Wettability and "Janus" particle. Langmuir 2001, 17 (16), 4708-4710.
16. PICKERING, S. U., PICKERING: Emulsions. Journal of the Chemical Society, Transactions 1907, 91 (0), 2001-2021.
17. Ramsden, W., Separation of solids in the surface-layers of solutions and ‘suspensions’ (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation).—Preliminary account. Proceedings of the Royal Society of London 1903, 72 (477-486), 156-164.
18. Zhu, M.; Li, Y.; Meng, T.; Zhan, P.; Sun, J.; Wu, J.; Wang, Z.; Zhu, S.; Ming, N., Controlled Strain on a Double-Templated Textured Polymer Film: a New Approach to Patterned Surfaces with Bravais Lattices and Chains. Langmuir 2006, 22 (17), 7248-7253.
19. Correa-Duarte, M. A.; Salgueiriño-Maceira, V.; Rodríguez-González, B.; Liz-Marzán, L. M.; Kosiorek, A.; Kandulski, W.; Giersig, M., Asymmetric functional colloids through selective hemisphere modification. Adv Mater 2005, 17 (16), 2014-2018.
20. Li, Z.; Lee, D.; Rubner, M. F.; Cohen, R. E., Layer-by-Layer Assembled Janus Microcapsules. Macromolecules 2005, 38 (19), 7876-7879.
21. Cayre, O. J.; Paunov, V. N., Contact angles of colloid silica and gold particles at air-water and oil-water interfaces determined with the gel trapping technique. Langmuir 2004, 20 (22), 9594-9599.
22. Paunov, V. N.; Cayre, O. J., Supraparticles and "Janus" particles fabricated by replication of particle monolayers at liquid surfaces using a gel trapping technique. adv Mater 2004, 16 (9), 788-791.
23. Cui, J.-Q.; Kretzschmar, I., Surface-Anisotropic Polystyrene Spheres by Electroless Deposition. Langmuir 2006, 22 (20), 8281-8284.
24. Nisisako, T.; Torii, T.; Takahashi, T.; Takizawa, Y., Synthesis of monodisperse bicolored janus particles with electrical anisotropy using a microfluidic co-flow system. Advanced Materials 2006, 18 (9), 1152-1156.
25. Shepherd, R. F.; Conrad, J. C.; Rhodes, S. K.; Link, D. R.; Marquez, M.; Weitz, D. A.; Lewis, J. A., Microfluidic assembly of homogeneous and janus colloid-filled hydrogel granules. Langmuir 2006, 22 (21), 8618-8622.
26. Nisisako, T.; Torii, T., Formation of biphasic Janus droplets in a microfabricated channel for the synthesis of shape-controlled polymer microparticles. Advanced Materials 2007, 19 (11), 1489.
27. Nie, Z.; Li, W.; Seo, M.; Xu, S.; Kumacheva, E., Janus and Ternary Particles Generated by Microfluidic Synthesis: Design, Synthesis, and Self-Assembly. J. Am. Chem. Soc. 2006, 128 (29), 9408-9412.
28. Roh, K. H.; Martin, D. C.; Lahann, J., Biphasic Janus particles with nanoscale anisotropy. Nature materials 2005, 4 (10), 759-63.
29. Roh, K. H.; Yoshida, M.; Lahann, J., Water-stable biphasic nanocolloids with potential use as anisotropic imaging probes. Langmuir 2007, 23 (10), 5683-5688.
30. Ho, C.-C.; Chen, W.-S.; Shie, T.-Y.; Lin, J.-N.; Kuo, C., Novel Fabrication of Janus Particles from the Surfaces of Electrospun Polymer Fibers. Langmuir 2008, 24 (11), 5663-5666.
31. Lin, C. C.; Liao, C. W.; Chao, Y. C.; Kuo, C., Fabrication and characterization of asymmetric Janus and ternary particles. ACS Applied Materials & Interfaces 2010, 2 (11), 3185-3191.
32. Truong-Cong, T.; Millart, E.; Tran, L. T. C.; Amenitsch, H.; Frebourg, G.; Lesieura, S.; Faivre, V., A scalable process to produce lipid-based compartmented Janus nanoparticles with pharmaceutically approved excipients. Nanoscale 2018, 10 (8), 3654-3662
33. Walther, A.; Matussek, K.; Muller, A. H. E., Engineering Nanostructured Polymer Blends with Controlled Nanoparticle Location using Janus Particles. Acs Nano 2008, 2 (6), 1167-1178.
34. Howse, J.; Jones, R.; Ryan, A.; Gough, T.; Vafabakhsh, R.; Golestanian, R., Self-Motile Colloidal Particles: From Directed Propulsion to Random Walk. Physical Review Letters 2007, 99 (4), 048102.
35. Alexeev, A.; Uspal, W. E.; Balazs, A. C., Harnessing Janus Nanoparticles to Create Controllable Pores in Membranes. Acs Nano 2008, 2 (6), 1117-1122.
36. Yi, Y.; Sanchez, L.; Gao, Y.; Yu, Y., Janus particles for biological imaging and sensing. The Analyst 2016, 141 (12), 3526-3539.
37. Wu, L. Y.; Ross, B. M.; Hong, S.; Lee, L. P., Bioinspired nanocorals with decoupled cellular targeting and sensing functionality. small 2010, 6 (4), 503-507.
38. Xuan, M.; Wu, Z.; Shao, J.; Dai, L.; Si, T.; He, Q., Near Infrared Light-Powered Janus Mesoporous Silica Nanoparticle Motors. Journal of American Chemical Society 2016, 138 (20), 6492-6497.
39. Du, Y.; Luna, L. E.; Tan, W. S.; Rubner, M. F.; Cohen, R. E., Hollow Silica Nanoparticles in UV−Visible Antireflection Coatings for Poly(methyl methacrylate) Substrates. ACS Nano 2010, 4 (7), 4308-4316.
40. Glotzer, S. C.; Solomon, M. J., Anisotropy of building blocks and their assembly into complex structures. Nature materials 2007, 6 (8), 557-562.
41. Creighton, M. A.; Ohata, Y.; Miyawaki, J.; Bose, A.; Hurt, R. H., Two-Dimensional Materials as Emulsion Stabilizers: Interfacial Thermodynamics and Molecular Barrier Properties. Langmuir 2014, 30 (13), 3687-3696.
42. Zhang, M.; Ngo, T. H.; Rabiah, N. I.; Otanicar, T. P.; Phelan, P. E.; Swaminathan, R.; Dai, L. L., Core-shell and asymmetric polystyrene-gold composite particles via one-step Pickering emulsion polymerization. Langmuir 2014, 30 (1), 75-82.
43. Xu, F.; Fang, Z.; Yang, D.; Gao, Y.; Li, H.; Chen, D., Water in oil emulsion stabilized by tadpole-like single chain polymer nanoparticles and its application in biphase reaction. ACS Appl Mater Interfaces 2014, 6 (9), 6717-23.
44. Jiang, S.; Chen, Q.; Tripathy, M.; Luijten, E.; Schweizer, K. S.; Granick, S., Janus particle synthesis and assembly. Adv Mater 2010, 22 (10), 1060-1071.
45. Cheung, D. L.; Bon, S. A. F., Stability of Janus nanoparticles at fluid interfaces. Soft Matter 2009, 5 (20), 3969-3976.
46. Li, J.; Shklyaev, O. E.; Li, T.; Liu, W.; Shum, H.; Rozen, I.; Balazs, A. C.; Wang, J., Self-Propelled Nanomotors Autonomously Seek and Repair Cracks. Nano Lett. 2015, 15 (10), 7077-7085.
47. Jiang, S.; Granick, S., Janus balance of amphiphilic colloidal particles. J. Chem. Phys. 2007, 127 (16), 161102.
48. Yu, C.; Zhang, J.; Granick, S., Selective Janus Particle Assembly at Tipping Points of Thermally-Switched Wetting. Angew Chem 2014, 53 (17), 4364-4367.
49. Rouquerol, J.; Avnir, D.; Fairbridge, C. W.; Everett, D. H.; Haynes, J. M.; Pernicone, N.; Ramsay, J. D. F.; Sing, K. S. W.; Unger, K. K., Recommendations for the characterization of porous solids (Technical Report). Pure and Applied Chemistry 1994, 66 (8).
50. Hanns Biegler, W.; Kallrath, G. f.; Bruhl-Vochem, Process for producing silica in the form of hollow spheres. 1968.
51. Page, M. L.; Raymond Beau, M.; Jacques Duchene, M.-A., Porous silica particles containing a crystallized phase and method. 1970.
52. Chiola, V.; Ritsko, J. E.; Vanderpool, C. D., Process for producing low-bulk density silica. 1971.
53. Trewyn, B. G.; Slowing, I. I.; Giri, S.; Chen, H.-T.; Lin, V. S.-Y., Synthesis and Functionalization of a Mesoporous Silica Nanoparticle Based on the Sol–Gel Process and Applications in Controlled Release. ACCOUNTS OFCHEMICAL RESEARCH 2007, 40 (9), 846-853.
54. Vallet-Regi, M.; Ra´mila, A.; Real, R. P. d.; Pe´rez-Pariente, J., A New Property of MCM-41: Drug Delivery System. Chemistry of Materials 2001, 13 (2), 308-311.
55. Trewyn, B. G.; Slowing, II; Giri, S.; Chen, H. T.; Lin, V. S., Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release. Accounts of chemical research 2007, 40 (9), 846-53.
56. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L., A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society 1992, 114 (27), 10834-10843.
57. Monnier, A.; Schuth, F.; Huo, Q.; Kumar, D.; Margolese, D. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures; California Univ.: 1993; 26.
58. Perego, C.; Millini, R., Porous materials in catalysis: challenges for mesoporous materials. Chemical Society reviews 2013, 42 (9), 3956-76.
59. Yoldas, B. E., Modification of polymer-gel structures. Journal of Non-Crystalline Solids 1984, 63 (1-2), 145-154.
60. Alothman, Z., A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials 2012, 5 (12), 2874-2902.
61. Zhang, Q.; Zhang, T.; Ge, J.; Yin, Y., Permeable Silica Shell through Surface-Protected Etching. Nano Lett 2008, 8 (9), 2867-2871.
62. Cohen Stuart, M. A.; Fleer, G. J.; Bijsterbosch, B. H., Adsorption of poly(vinyl pyrrolidone) on silica. II. The fraction of bound segments, measured by a variety of techniques. Journal of colloid and interface science 1982, 90 (2), 321-334.
63. Gun'ko, V. M.; Zarko, V. I.; Voronin, E. F.; Goncharuk, E. V.; Andriyko, L. S.; Guzenko, N. V.; Nosach, L. V.; Janusz, W., Successive interaction of pairs of soluble organics with nanosilica in aqueous media. Journal of colloid and interface science 2006, 300 (1), 20-32.
64. Nelson, A.; Jack, K. S.; Cosgrove, T.; Kozak, D., NMR Solvent Relaxation in Studies of Multicomponent Polymer Adsorption. Langmuir 2002, 18 (7), 2750-2755.
65. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359 (6397), 710-712.
66. Li, X.; Zhou, L.; Wei, Y.; El-Toni, A. M.; Zhang, F.; Zhao, D., Anisotropic Growth-Induced Synthesis of Dual-Compartment Janus Mesoporous Silica Nanoparticles for Bimodal Triggered Drugs Delivery. American Chemical Society 2014, 136 (42), 15086-15092.
67. Huang, C. C.; Huang, W.; Yeh, C. S., Shell-by-shell synthesis of multi-shelled mesoporous silica nanospheres for optical imaging and drug delivery. Biomaterials 2011, 32 (2), 556-564.
68. Lee, C. H.; Cheng, S. H.; Wang, Y. J.; Chen, Y. C.; Chen, N. T.; Souris, J.; Chen, C. T.; Mou, C. Y.; Yang, C. S.; Lo, L. W., Near‐Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution. Advanced Functional Materials 2009, 19 (2), 215-222.
69. Weitkamp, J., Zeolites and catalysis. Solid State Ionics 2000, 131 (1-2), 175-188.
70. Giraldo, L. F.; López, B. L.; Pérez, L.; Urrego, S.; Sierra, L.; Mesa, M., Mesoporous Silica Applications. Macromolecular Symposia 2007, 258 (1), 129-141.
71. Bharti, C.; Nagaich, U.; Pal, A. K.; Gulati, N., Mesoporous silica nanoparticles in target drug delivery system: A review. International journal of pharmaceutical investigation 2015, 5 (3), 124-33.
72. Tourne-Peteilh, C.; Begu, S.; Lerner, D. A.; Galarneau, A.; Lafont, U.; Devoisselle, J.-M., Sol–gel one-pot synthesis in soft conditions of mesoporous silica materials ready for drug delivery system. Journal of Sol-Gel Science and Technology 2011, 61 (3), 455-462.
73. Argyo, C.; Weiss, V.; Bräuchle, C.; Bein, T., Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. Chemistry of Materials 2014, 26 (1), 435-451.
74. Scott, B. J.; Wirnsberger, G.; Stucky, G. D., Mesoporous and Mesostructured Materials for Optical Applications. Chemistry of Materials 2001, 13 (10), 3140-3150.
75. Guli, M.; Chen, S.; Zhang, D.; Li, X.; Yao, J.; Chen, L.; Xiao, L., Optical performance of mesostructured composite silica film loaded with organic dye. Applied optics 2014, 53 (2), 291-5.
76. Grzybowski, B. A.; Wilmer, C. E.; Kim, J.; Browne, K. P.; Bishop, K. J. M., Self-assembly: from crystals to cells. Soft Matter 2009, 5 (6), 1110-1128.
77. Whitesides, G. M.; Grzybowski, B., Self-assembly at all scales. Science (Washington, DC, U. S.) 2002, 295 (5564), 2418-2421.
78. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. & Watson, J. D., Molecular biology of the cell (third edition). Garland: New York, 1994.
79. Schwiebert, K. E.; Chin, D. N.; MacDonald, J. C.; Whitesides, G. M., Engineering the solid state with 2-benzimidazolones. Journal of the American Chemical Society 1996, 118 (17), 4018-4029.
80. Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons, E.; Friend, R. H.; MacKenzie, J. D., Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 2001, 293 (5532), 1119-1122.
81. De Rosa, C.; Park, C.; Thomas, E. L.; Lotz, B., Microdomain patterns from directional eutectic solidification and epitaxy. Nature (London) 2000, 405 (6785), 433-437.
82. Whitesides, G. M., Self-Assembling Materials. SCIENTIFIC AMERICAN 1995, 273 (3), 146-149.
83. Therien-Aubin, H.; Lukach, A.; Pitch, N.; Kumacheva, E., Coassembly of Nanorods and Nanospheres in Suspensions and in Stratified Films. Angew. Chem., Int. Ed. 2015, 54 (19), 5618-5622.
84. Lukach, A.; Therien-Aubin, H.; Querejeta-Fernandez, A.; Pitch, N.; Chauve, G.; Methot, M.; Bouchard, J.; Kumacheva, E., Coassembly of Gold Nanoparticles and Cellulose Nanocrystals in Composite Films. Langmuir 2015, 31 (18), 5033-5041.
85. Jenekhe, S. A.; Chen, X. L., Self-assembly of ordered microporous materials from rod-coil block copolymers. Science 1999, 283 (5400), 372-375.
86. Tan, L. H.; Xing, H.; Lu, Y., DNA as a Powerful Tool for Morphology Control, Spatial Positioning, and Dynamic Assembly of Nanoparticles. Accounts of chemical research 2014.
87. Pregibon, D. C.; Toner, M.; Doyle, P. S., Multifunctional encoded particles for high-throughput biomolecule analysis. Science 2007, 315 (5817), 1393-1396.
88. Lehmann, O.; Stuke, M., Laser-Driven Movement of 3-Dimentional Microstructures Generated by Laser Rapid Prototyping. Science 1995, 270 (5242), 1644-1646.
89. Shepherd, R. F.; Panda, P.; Bao, Z.; Sandhage, K. H.; Hatton, T. A.; Lewis, J. A.; Doyle, P. S., Stop-Flow Lithography of Colloidal, Glass, and Silicon Microcomponents. Advanced Materials 2008, 20 (24), 4734.
90. Melle, S.; Calderon, O. G.; Laurenti, M.; Mendez-Gonzalez, D.; Egatz-Gomez, A.; Lopez-Cabarcos, E.; Cabrera-Granado, E.; Diaz, E.; Rubio-Retama, J., Forster Resonance Energy Transfer Distance Dependence from Upconverting Nanoparticles to Quantum Dots. J. Phys. Chem. C 2018, 122 (32), 18751-18758.
91. Baird, L.; Swift, S.; Lleres, D.; Dinkova-Kostova, A. T., Monitoring Keap1-Nrf2 interactions in single live cells. Biotechnol. Adv. 2014, 32 (6), 1133-1144.
92. Biskup, C.; Zimmer, T.; Kelbauskas, L.; Hoffmann, B.; Kloecker, N.; Becker, W.; Bergmann, A.; Benndorf, K., Multi-dimensional fluorescence lifetime and FRET measurements. Microsc. Res. Tech. 2007, 70 (5), 442-451.
93. Yao, J.; Yang, M.; Duan, Y., Chemistry, Biology, and Medicine of Fluorescent Nanomaterials and Related Systems: New Insights into Biosensing, Bioimaging, Genomics, Diagnostics, and Therapy. Chem. Rev. (Washington, DC, U. S.) 2014, 114 (12), 6130-6178.
94. Gordon, G. W.; Berry, G.; Liang, X. H.; Levine, B.; Herman, B., Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys. J. 1998, 74 (5), 2702-2713.
95. Kasha, M., Characterization of electronic transitions in complex molecules. Discuss. Faraday Soc. 1950, No. 9, 14-19.
96. Rowland, C. E.; Delehanty, J. B.; Dwyer, C. L.; Medintz, I. L., Growing applications for bioassembled Forster resonance energy transfer cascades. Mater. Today (Oxford, U. K.) 2017, 20 (3), 131-141.
97. Lohse, M. J.; Nuber, S.; Hoffmann, C., Fluorescence/Bioluminescence Resonance Energy Transfer Techniques to Study G-Protein-Coupled Receptor Activation and Signaling. Pharmacological Reviews 2012, 64 (2), 299-336.
98. Kurokawa, K.; Takaya, A.; Terai, K.; Fujioka, A.; Matsuda, M., Visualizing the signal transduction pathways in living cells with GFP-based FRET probes. Acta Histochem. Cytochem. 2004, 37 (6), 347-355.
99. Terai, K.; Matsuda, M., Ras binding opens c-Raf to expose the docking site for mitogen-activated protein kinase kinase. EMBO Rep. 2005, 6 (3), 251-255.
100. Qiu, S.; Hua, Y.-l.; Yang, F.; Chen, Y.-z.; Luo, J.-h., Subunit Assembly of N-Methyl-D-aspartate Receptors Analyzed by Fluorescence Resonance Energy Transfer. J. Biol. Chem. 2005, 280 (26), 24923-24930.
101. Kondo, T.; Fujioka, M.; Tsuda, M.; Murai, K.; Yamaguchi, K.; Miyagishima, T.; Shindo, M.; Nagashima, T.; Wakasa, K.; Fujimoto, N.; Yamamoto, S.; Yonezumi, M.; Saito, S.; Sato, S.; Ogawa, K.; Chou, T.; Watanabe, R.; Kato, Y.; Takahashi, S.; Okano, Y.; Yamamoto, J.; Ohta, M.; Iijima, H.; Oba, K.; Kishino, S.; Sakamoto, J.; Ishida, Y.; Ohba, Y.; Teshima, T.; the, I.-M. D. S. G., Pretreatment evaluation of fluorescence resonance energy transfer-based drug sensitivity test for patients with chronic myelogenous leukemia treated with dasatinib. Cancer Sci. 2018, 109 (7), 2256-2265.
102. Day, R. N.; Davidson, M. W., Fluorescent proteins for FRET microscopy: Monitoring protein interactions in living cells. BioEssays 2012, 34 (5), 341-350.
103. Gao, Y.; Liu, S.-S.; Qiu, S.; Cheng, W.; Zheng, J.; Luo, J.-H., Fluorescence resonance energy transfer analysis of subunit assembly of the ASIC channel. Biochem. Biophys. Res. Commun. 2007, 359 (1), 143-150.
104. Padilla-Parra, S.; Tramier, M., FRET microscopy in the living cell: different approaches, strengths and weaknesses. Bioessays 2012, 34 (5), 369-76.
105. Mulholland, G. W.; Donnelly, M. K.; Hagwood, C. R.; Kukuck, S. R.; Hackley, V. A.; Pui, D. Y. H., Measurement of 100 nm and 60 nm Particle Standards by Differential Mobility Analysis. J Res Natl Inst Stand Technol 2006, 111 (4), 257-312.
106. Elsesser, M. T.; Hollingsworth, A. D.; Edmond, K. V.; Pine, D. J., Large Core-Shell Poly(methyl methacrylate) Colloidal Clusters: Synthesis, Characterization, and Tracking. Langmuir 2011, 27 (3), 917-927.
107. Vidal-Gadea, Andres, Bainbridge, Chance, Clites, BenResponse to comment on "magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis elegans". eLife 2018, 7, 1-12
108. Iron-Exchanged Zeolite Micromotors for Enhanced Degradation of Organic Pollutants, Langmuir 2020, 36 (25), 6924-6929
109. The rotating magnetocaloric effect as a potential mechanism for natural magnetic senses, PloS One 2019, 14 (10), 1-20
110. Putman, Nathan F.; Williams, Chase R., Gallagher, Evan P.; Dittman, Andrew H.; A sense of place: pink salmon use a magnetic map for orientation, J Exp Biol 2020, 223 (4), 1-10
111. Sangyeul Hwang, Trung Dac Nguyen, Srijanani Bhaskar, Jaewon Yoon, Marvin Klaiber, Kyung Jin Lee, Sharon C. Glotzer, Joerg Lahann, Cooperative Switching in Large-Area Assemblies of Magnetic Janus Particles, Adv. Funct 2020, 30 (26), 1907865-1907873
112. Claudia Marschelke, Olga Diringaband, Alla Synytska, Reconfigurable assembly of charged polymer-modified Janus and non-Janus particles: from half-raspberries to colloidal clusters and chains, Nanoscale Advances 2019, 1 (9), 3715-3726
113. Zuochen Wang, Zhisheng Wang, Jiahui Li, Yufeng Wang, Directional and Reconfigurable Assembly of Metallodielectric Patchy Particles, ACS Nano 2021, 15, 5439-5448
114. Chengjun Kang and Andrei Honciuc, Self-Assembly of Janus Nanoparticles into Transformable Suprastructures, J. Phys. Chem. Lett. 2018, 9 (6), 1415-1421
校內:2026-10-15公開