| 研究生: |
古慧雯 Gu, Hui-Wen |
|---|---|
| 論文名稱: |
通道內散熱片之大渦紊流模式及熱傳研究 Study of Large Eddy Simulation and Heat Transfer for Fins in Channel |
| 指導教授: |
吳鴻文
Wu, Horng-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 散熱片 、鳍片密度 、大渦漩數值模擬 |
| 外文關鍵詞: | large eddy simulation, heat sink, fin densities |
| 相關次數: | 點閱:58 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以元素疊代(Element-by-Element)為基礎的投射有限元素流體解析法(projection finite element fluid analysis)為主,對於均勻紊流流過二維強制對流通道之散熱片的暫態流動及其傳熱現象進行分析。以EBE-PCG投射有限元素法取代以往有限元素法解無因次之Navier-Stokes Equation及能量方程式,乃是為了能減少矩陣的儲存量,及減少電腦上的計算時間。並且運用Large Eddy Simulation的紊流模式來模擬紊流流場,以前置處理之共軛梯度法(preconditioned conjugate gradient method)加以疊代而解出其速度場,壓力場和溫度場。
本文提供一套EBE-PCG數值模擬二維風道內強制對流之散熱片。目的在不同風向角、不同葉片密度及不同雷諾數下,求得通道流場中的速度場、壓力場及溫度場。研究結果顯示:
(1)紐賽數Nu、阻力係數CD與升力係數CL值會隨著雷諾數增加而 變大。
(2)低鳍片密度在低雷諾數下紐賽數Nu值要比高鳍片密度好。隨雷諾數增加,兩者的紐賽數Nu值會越來越接近。
(3)散熱片在風向角0度時比在風向角90度時,有較佳的散熱能力。
This paper used Element-by-Element projection finite element for uniform turbulent flow in a 2D forced convection channel with heat sinks. Using Element-by-Element finite element preconditioned conjugate gradient method replaces the traditional finite element method for the non-dimensional Navier-Stokes Equation and Energy Equation. It can reduce matrix storage and computational time. Using large eddy simulation method turbulent model simulates turbulent flow with preconditioned conjugate gradient method for iterating process to obtain velocity field, pressure filed, and temperature field.
This paper offered a set of EBE-PCG numerical simulation method to simulate 2D heat sinks in a forced convection channel. The main purpose of this study is to find velocity field, pressure filed, and temperature field under different flow angle, different fin densities and different Reynolds number. The results show:
(1)The Nusselt number, the drag coefficient and the lift coefficient will increase with increasing Reynolds number.
(2)The Nusselt number at a low fin density is better than a high fin density under the low Reynolds number, and both of the Nusselt number will be getting close with increasing Reynolds number.
(3)The heat sinks have better heat dissipation ability in 0 degrees of the flow angle than in 90 degrees of flow angle.
[1]彭相武,應用大渦漩數值模擬於引擎氣缸內之紊流流場與熱傳現象之研究,國立成功大學造船及船舶機械工程研究所博士論文,2002。
[2]Wirtz, R. A., Chen, W. snd Zhou, R., “Effect of Flow Bypass on the Performance of Longitudinal Fin Heat Sinks ,” Transactions of the ASME, vol. 116, p 206-211, 1994.
[3]王志賓,CPU散熱片散熱效應之研究,國立成功大學工程科學研究所碩士論文,1995。
[4]陳建宏,CPU散熱片散熱效率之研究,國立成功大學工程科學研究所碩士論文,1998。
[5]El-Sayed, S. A., Mohamed, S. M., Abdel-latif, A. M., and Abouda, A.E., “Investigation of Turbulent Heat Transfer and Fluid Flow in Longitudinal Rectangular-Fin Arrays of Different Geometries and Shrouded Fin Array,” Experimental Thermal and Fluid Science, vol. 26, no. 8, p 879-900, 2002.
[6]Schnipke, R.J., Hayward,J.D. and Rice, J.G., “Fluid Flow and Heat Transfer Analysis for Evaluating the Effectiveness of an IC Package Heat Sink,” Proceedings of the 5th Annual IEEE Semiconductor Thermal and Temperature Measurement Symposium, p 81-87, 1989.
[7]Linton, R. L., and Agonafer, D., “Coarse and Detailed CFD Modeling of a Finned Heat Sink,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, vol. 18, no. 3, p 517-520, 1995.
[8]Barrett, A. V. and Obinelo, I. F., “Characterization of Longitudinal Fin Heat Sink Thermal Performance and Flow Bypass Effects Through CFD Methods,” Proceedings of the 13th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, p 158-164, 1997.
[9]Jonsson, Hans and Palm, Bjorn, “Thermal and Hydraulic Behavior of Plate Fin and Strip Fin Heat Sinks Under Varying Bypass Conditions,” IEEE Transactions on Components and Packaging Technologies, vol. 23, no. 1, March 2000.
[10]Thomas J.R. Hughes, M. ASCE Itzhak Levit, and James Winget, ”Element-By-Element Implicit Algorithms for Heat Conduction,” Journal of Engineering Mechanics, vol. 109, no.2, p 576-585, Apr 1983.
[11]Thomas J.R. Hughes, Itzhak Levit and James Winget, “An Element-By-Element Solution Algorithm For Problems of Structural and Solid Mechanics,” Computer Methods in Applied Mechanics and Engineering , vol.36, no. 2, p 241-254 , Feb 1983.
[12]Miguel Ortiz, Peter M. Pinsky and Robert L. Taylor, “Unconditionally Stable Element-By-Element Algorithms for Dynamic Problem,” Computer Methods in Applied Mechanics and Engineering , vol. 36, no. 2, p 223-239, Feb 1983.
[13]Thomas J.R. Hughes, James Winget, Itzhak Levit and T.E. Tezduyar, “New Alternate Directions Procedure in Finite Element Analysis Based Upon EBE Approximate Factorization,” Proceedings of the Symposium on Recent Developments in Computer Methods for Nonlinear Solid and Structural Mechanics, Proceedings of the ASME Joint Meeting of Fluid Engineering, Applied Mechanics and Bioengineering, University of Houston, Texas, June 1983.
[14]Thomas J.R. Hughes, A. Raefsky, A. Muller, J. Winget and I. Levit, “A Progress Report on EBE Solution Proceedings in Solid Mechanics,” Proceedings of the Second International Conference on Nonlinear Problems, Barcelona, Spain, April 1984.
[15]Winget, J.M., “Element by Element Solution Procedures for Nonlinear transient heat condition analysis,” Ph.D. Thesis, California Institute of Technology, 1983.
[16]Itzhak Levit, “Element-By-Element Solvers of Order N,” Computers and Structures , vol. 27, no. 3, p 357-360, 1987.
[17]Graham F.Carey and Bo-nan Jiang, “Element-By-Element Linear and Nonlinear Solution Schemes,” Communications in Applied Numerical Methods, vol. 2, p 145-153, 1986.
[18]Wathen, A.j., ”An Analysis of Some Element-By-Element Techniques,” Computer Methods in Applied Mechanics and Engineering, vol. 74 , p 271-287, 1989.
[19]Jocelyne Erhel, Alice Traynard and Marina Vidrascu, “An Element-By-Element Preconditioned Conjugate Gradient Method Implemented on Vector Computer,” Parallel Computing, vol.17, p 1051-1065, 1991.
[20]Manolis Papadrakakis and Michael C. Dracopoulos, “A Global Preconditioner for the Element-By-Element Solution Methods, ” Computer Methods in Applied Mechanics and Engineering, vol.88, p 275-286, 1991.
[21]Reedy, M.P. and Reddy, J.N., “Penalty Finit Element Analysis of Incompressible Flows Using Element by Element Solution Algorithms,” Computer Methods in Applied Mechanics and Engineering, vol.100, p 169-205, 1992.
[22]Akira Mizukami, “Element-by-Element Penalty / Uzawa Formulation for Large Scale Flow Problems,” Computer Methods In Applied Mechanics and Engineering, vol.112, p 283-289, 1994.
[23]Zhiping Li, M.B.Reed , ”Convergence Analysis for An Element-by-Element Finite Element Method,” Computer Methods in Applied Mechanics and Engineering, vol.123, p 33-42, 1995.
[24]Adefemi Sunmonu, “Implementation of A Novel Element-BY-Element Finite Element Method on the Hypercube,” Computer Methods in Applied Mechanics and Engineering, vol. 123, p 43-51, 1995.
[25]Reddy, M.P. and Reddy, J.N., “Multigrid Methods to Accelerate Convergence of Element-By-Element Solution Algorithms for Viscous Incompressible Flows,” Computer Methods in Applied Mechanics and Engineering, vol. 132, p 179-193, 1996.
[26]Nakabayashi, Y., Okuda, H. and Yagawa, G., “Parallel Finite Element Fluid Analysis on An Element-By-Element Basis,” Computational Mechanics, vol. 18, p 377-382, 1996.
[27]Chorin, A.J, “Numerical Solution of Navier-Stokes Equations,” Math. Comp., vol. 22, p 745-762, 1968.
[28]Ramaswamy, B., Jue, T.C. and Akin, J.E., ”Semi-implicit and Explicit Finite Element Schemes for Coupled Fluid/Thermal Problems,” Int. J. Numer. Methods Eng, vol. 34, p 675-696, 1992.
[29]Sungsu. Lee. ”Lager Eddy Simulation of Flow past a Square Cylinder Using Finite Element Method,” 1997.
[30]莊和達,運用EBE-PCG及投射有限元素法計算不可壓縮流體之熱傳現象,國立成功大學造船及船舶機械工程研究所碩士論文,2000。
[31]劉彩吉,應用大渦紊流模擬(LES)模式於二維與三維之通道內紊流流場及熱傳研究,國立成功大學造船及船舶機械工程研究所碩士論文,2001。
[32]楊維仁,通道內三圓柱之大渦紊流模式及熱傳研究,國立成功大學造船及船舶機械工程研究所碩士論文,2002。
[33]Hughes, T.J.R., Levit, I., and Winget, J.M., “Implicit, Unconditionally Stable Algorithms for Heat Conduction Analysis,” J. Eng. Mechanics Division ASCE 109, p 576-585, 1983.
[34]Hughes, T.J.R., and Winget, J.M., ”Solution Algorithms for Nonlinear Transient Heat Conduction Analysis Employing Element by Element Iteratives Strategies,” Comput. Meth. Appl. Mechanics Eng, vol.52, p 711-815, 1985.
[35]Bailey, R.T., Shih, T.I-P., Nguyen, H.L. and Roelke, R.J.,”Gird 2D/3D-A Computer Program for Generating Gird Systems in Complex-Shaped Two- and Three-Dimensional Spatial Domains. Part 1: Theory and Method,” NASA Technical Memorandum 102453, March 1990.
[36]Bailey, R.T., Shih, T.I-P., Nguyen, H.L. and Roelke, R.J.,”Gird 2D/3D-A Computer Program for Generating Gird Systems in Complex-Shaped Two- and Three-Dimensional Spatial Domains. Part 2: User’s Manual and Program Listing,” NASA Technical Memorandum 102454, April 1990.