簡易檢索 / 詳目顯示

研究生: 郭家昇
Guo, Jason
論文名稱: 廣域多點定位系統之地面參考站地理幾何分布對定位效能影響研究
Effect of ground station geometric distribution on wide area multilateration positioning performance
指導教授: 詹劭勳
Jan, Shau-Shiun
學位類別: 碩士
Master
系所名稱: 工學院 - 民航研究所
Institute of Civil Aviation
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 49
中文關鍵詞: 替代定位導航校時系統廣域多點定位抵達時間差定位幾何稀釋因子多觀測量定位
外文關鍵詞: Alternative positioning, navigation, and timing (APNT), Wide-area multilateration (WAM), Differential time of arrival (DTOA), Dilution of precision (DOP), Multi-measurement positioning
相關次數: 點閱:124下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球衛星導航系統是下一代的民航監視系統的關建促成技術,其所能提供連續、準確的定位服務使得此套系統所衍生的民航監視系統能夠迎合快速發展的民航運輸流量。然而,許多研究亦指出衛星導航訊號可以被刻意或非刻意的干擾。為了應付衛星導航系統無法正常運作的狀況,替代導航系統的概念在許多研究中被提出,其主旨即為如何在全球衛星導航系統失效時對空域中的航機持續提供相同精準度的導航服務。
    在這篇論文的第一部分使用市面上即可取得的器材實現了廣域多點定位架構的替代導航系統,並以此套系統以及抵達時間差定位演算法於台南市周邊進行了一個城市規模的航機定位實驗。此篇論文所取得的定位結果驗證了廣域多點定位架構的可行性並以百公尺等級的誤差定位出台南上空的航機,並且這個實驗同時也展示了廣域多點定位架構先天上受制於參考站幾何分布的特性。
    因此,在這篇論文的第二部分對參考站幾何限制著手討論。海島型國家如台灣由於先天上地形的條件,在使用域多點定位架構下需要更加注意並考量此一限制。多觀測量定位演算法在本論文的第二部分被討論以增進廣域多點定位架構在參考站分布相對受到限制時的表現,其結果顯示本論文所提出的新一代廣域多點定位增強系統架構能夠對在台北飛航情報區單一參考站涵蓋範圍增進約10%的定位服務範圍。

    Global navigation satellite system (GNSS) is essential to aviation communication, navigation, surveillance, and air traffic management. A continuous accurate positioning service allows a GNSS-supported surveillance system to keep up with the growing requirements of civil aviation. However, many studies have shown that GNSS signals are susceptible to interference. To continue accurate positioning service in the case of GNSS failure, various alternative positioning, navigation, and timing (APNT) systems have been proposed. The objectives of APNT systems are to provide navigation and surveillance services to ensure flight safety when GNSS fails.

    In the first part of this thesis, the wide area multilateration (WAM) mechanism for APNT systems is developed using commercial off-the-shelf components, and a city-size multilateration experiment is carried out in the proximity of Tainan, Taiwan. Using the four ground reference stations surrounding Tainan, the differential time of arrival positioning algorithm is employed to calculate the positions of aircraft passing above Tainan. The positioning results show positive positioning result with positioning error around 100 meters horizontally. However, this experiment also showed the mechanism’s limitation on the positioning due to the geometry of stations.
    In the second part of this thesis, to overcome the geometry limitation, a viable concept is developed based on a multi-measurement positioning algorithm. A simulation is conducted to validate the proposed concept. In comparison to the original WAM based APNT, the results showed that the positioning service coverage is increased about 10% using multi-measurement positioning algorithm.

    摘要 I Abstract III 誌謝 V 中文提要 VI 第一章 緒論 VI 第二章 廣域多點定位 VI 第三章 城市規模廣域多點定位實驗 VI 第四章 廣域多點定位增強系統 VI 第五章 結論與未來工作 VII Table of Contents VIII List of Tables X List of Figures XI Chapter 1. Introduction and Overview 1 1.1 Motivation and objectives 2 1.2 ADS-B system structure 2 1.3 Wide area multilateration mechanism 3 1.4 Previous works 4 1.5 Thesis organization 6 Chapter 2. Positioning Algorithms for WAM Mechanism 7 2.1 DTOA positioning principle 7 2.1.1 Taylor series positioning algorithm 8 2.1.2 Chan’s positioning algorithm 10 2.1.3 Positioning algorithm analysis 13 2.2 Dilution of precision 14 2.3 Interim summery 15 Chapter 3. WAM City Scale Experiment 17 3.1 Experiment set-up 17 3.2 Experiment result. 19 3.3 Interim Summary 26 Chapter 4. WAM mechanism enhancement 27 4.1 Multi-measurement positioning 28 4.2 Acquiring relative AOA based on current WAM set-up 32 4.2.1 LOS relative speed 32 4.2.2 Acquiring relative bearing angle 34 4.2.3 Point of notice 36 4.3 Combined measurement positioning algorithm 37 4.4 Combined AOA and DTOA positioning algorithm HDOP analysis 39 4.5 Interim Summary 45 Chapter 5. Conclusion and future work 46 Reference 48

    [1] W. Y. Ochieng, K. Sauer, D. Walsh, G. Brodin, S. Griffin, and M. Denney, “GPS integrity and potential impact on aviation safety,” The journal of navigation, vol. 56, no. 01, pp. 51–65, 2003.
    [2] “Global Air Navigation Plan for CNS/ATM Systems,” ICAO doc 9750 AN/963, 2002.
    [3] L. Eldredge, P. Enge, M. Harrison, R. Kenagy, R. Lilly, S. Lo, R. Loh, M. Narins, and R. Niles, “GNSS Vulnerability and Alternative PNT,” GPS World, 2010.
    [4] S. Lo and P. Enge, “Capacity Study of Two Potential Alternative Position Navigation and Timing (APNT) Services for Aviation,” in Proceedings of the 2011 International Technical Meeting of the Institute of Navigation, pp. 192–205, 2001.
    [5] Y. H. Chen, S. Lo, D. Akos, G. Wong, and P. Enge, “A Testbed for Studying Automatic Dependent Surveillance Broadcast (ADS-B) Based Range and Positioning Performance to Support Alternative Position Navigation and Timing (APNT),” in Proceedings of the 26th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2013), pp. 263–273, 2013.
    [6] Niles, F. A., Conker, R. S., El-Arini, M. B., O’Laughlin, D. G., Baraban, D. V., “Wide Area Multilateration for Alternate Position, Navigation, and Timing (APNT),” Federal Aviation Administration, 2012.
    [7] S. S. Jan and S. L. Jheng, “Evaluation of Positioning Algorithms for Wide Area Multilateration Based Alternative Positioning Navigation and Timing (APNT) Using 1090 MHz ADS-B Signals,” in Proceedings of the 2014 International Technical Meeting of the Institute of Navigation, 2014.
    [8] Y. H. Chen, S. Lo, D. Akos, G. Wong, and P. Enge, “A Testbed for Studying Automatic Dependent Surveillance Broadcast (ADS-B) Based Range and Positioning Performance to Support Alternative Position Navigation and Timing (APNT),” in Proceedings of the 26th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2013), pp. 263–273, 2013.
    [9] W. Foy, “Position-Location Solutions by Taylor-Series Estimation,” Aerospace and Electronic Systems, IEEE Transactions, vol. AES-12, pp. 187–194, March 1976.
    [10] Y. Chan and K. Ho, “A simple and efficient estimator for hyperbolic location,” Signal Processing, IEEE Transactions on, vol. 42, no. 8, pp. 1905–1915, 1994.
    [11] J. Guo and S. S. Jan, “Evaluation of Positioning Algorithms for Alternative Position Navigation and Timing Service,” in Astronautical Society of the Republic of China, 2014.
    [12] K. Becker, “An efficient method of passive emitter location,” Aerospace and Electronic Systems, IEEE Transactions on, vol. 28, no. 4, pp. 1091–1104, 1992.
    [13] A. Broumandan, T. Lin, J. Nielsen, G. Lachapelle, “Practical Results of Hybrid AOA/TDOA Geolocation Estimation in CDMA Wireless Networks,” IEEE, 2008
    [14] X. Pei, Z. Huang, Y. Zhu, and W. Liu, “Research on the relationship between dop and the number of stations for multilateration system,” in Information Theory and Information Security (ICITIS), 2010 IEEE International Conference on, pp. 786–789, IEEE, 2010.
    [15] T. Meyer and J. Bradley, “The Evolution from Area Navigation (RNAV), Required Navigation Performance (RNP), to RNP RNAV,” ICAO GNSSP IP11.

    無法下載圖示 校內:2020-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE