| 研究生: |
潘思蓉 Pan, Ssu-Jung |
|---|---|
| 論文名稱: |
毛球形碳材之製備與在PEMFC陰極觸媒之應用 Preparation of Fluffy-like Carbon Support and Its Application on Cathodic Catalyst of PEMFC |
| 指導教授: |
楊明長
Yang, Ming-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 質子交換膜燃料電池 、碳材 、毛球形碳材 、陰極觸媒 |
| 外文關鍵詞: | PEMFC, carbon support, fluffy-like carbon, cathode catalyst |
| 相關次數: | 點閱:55 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
燃料電池可將化學能轉化成電能,持續且穩定的供電以及副產品產生無汙染的水及熱,因而具有其發展性。質子交換膜燃料電池以氫氣及氧氣作為反應物以產生電能。而膜電極中幫助進行反應的電極觸媒常使用擔載於白金-釕之合金觸媒,觸媒活性及碳材形態將影響其全電池之放電效能。本研究在中孔碳擔體MC上生長奈米碳管,製備毛球形碳材(MC-CNT),藉改變奈米碳管生長溫度、成長時間及乙炔濃度,探討其對全電池效能放電之影響。
由SEM及TEM可觀察碳管密度隨著乙炔濃度增加而有升高的趨勢,而生長時間愈長,其碳管的密度及長度都會提高。而較高溫之下所生長的碳管,其密度略微下降,而碳管直徑增加。而碳材成長條件於乙炔濃度8%、生長時間5分鐘及成長溫度在650oC成長的毛球形碳材所製備的觸媒在半電池線性掃描可達最大的交換電流密度。而所有的MC-CNT製成的觸媒(即Pt-Ru/MC-CNT)與MC之觸媒相比,在氧氣還原掃描之下皆有較正電位的起始電位值E0。
而碳管成長條件在乙炔濃度2%、生長時間30分鐘及成長溫度在650oC的毛球形碳材所製備的觸媒在全電池放電有最大功率密度為171.25mW/cm2,較MC高了227%,且較商用觸媒Johnson Matthey高了11%。
比較MC-CNT及MC在全電池極化曲線及交流阻抗分析所得之總阻抗及歐姆阻抗,MC-CNT之值均小於MC,顯示生長碳管有助於減少碳材在全電池中之歐姆阻抗。
Fuel cell is a device could transform chemical energy into electric energy. It only produce water and heat. Its anti-pollution and continuous power supply make it become a promising technology. Proton exchange membrane fuel cell (PEMFC) use hydrogen and oxygen as the feed. The membrane electrode assembly (MEA) of PEMFC commonly use Pt-Ru alloy as the catalyst. The activity of catalyst and the morphology of carbon support play the major roles in the single cell performance. In this study, carbon nanotubes were grown on the surface of mesoporous carbon to prepare the fluffy-like carbon support (MC-CNT), the effects of growing temperature, growing time and concentration of C2H2 on the single cell performance were investigated.
From the SEM and TEM images, the density of carbon nanotube increase with the concentration of C2H2 . The density and the length of carbon nanotube also increase with growing time. Under higher temperature, the density of carbon nanotube will be slightly lower and the diameter of carbon nanotube will become larger.
In the linear sweeping voltammetry (LSV) of half cell test, carbon nanotubes growing in 8% C2H2, at 650oC for 5min gave the largest exchange current. All the catalyst prepared by MC-CNT, named as Pt-Ru/MC-CNT, have the more positive on-set potential for oxygen reduction than them by mesoporous carbon.
The carbon nanotubes grown in 2% C2H2 at 650oC for 30 min gave the largest maximum power density in the single cell test. The maximum power density was 227% higher than that without nanotubes (Pt-Ru/MC) , and 11% higher than that with commercial catalyst from Johnson Matthey.
From the polarization curve and ac impedance analysis of the single cell, the overall resistance and ohmic resistance of Pt-Ru/MC-CNT were smaller than those of Pt-Ru/MC. It meant growing carbon nanotube from mesoporous carbon decrease the overall and ohmic resistance in the single cell.
[1] 鄭耀宗、徐耀昇, 燃料電池技術進展的現況. 燃料電池論文集., (1989)15-27.
[2] A. Biyikoglu, Review of proton exchange membrane fuel cell models, International Journal of Hydrogen Energy 30 (2005) 1181-1212.
[3] Z. Ogumi, T. Kuroe, Z. Takehara, gas permeation on spe methode.2. oxygen and hydrogen permeation through nafion, Journal of The Electrochemical Society 132 (1985) 2601-2605.
[4] H.L. Huang, P.K. Dasgupta, Z. Genfa, J. Wang, A pulse amperometric sensor for the measurement of atmospheric hydrogen peroxide, Analytical Chemistry 68 (1996) 2062-2066.
[5]L.J. Bregoli, influence of platinum crystallite size on electrochemical reduction of oxygen in phosphoric-acid, Electrochimica Acta 23 (1978) 489-492.
[6]J. Bett, Lundquis.J, platinum crystallite size considerations for electrocatalytic oxygen reduction, Electrochimica Acta 18 (1973) 343-348.
[7]X. Yu, S. Ye, Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part I. Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst, Journal of Power Sources 172 (2007) 133-144.
[8]Y.D. Qian, W. Wen, P.A. Adcock, Z. Jiang, N. Hakim, M.S. Saha, S. Mukerjee, PtM/C catalyst prepared using reverse micelle method for oxygen reduction reaction in PEM fuel cells, Journal of Physical Chemistry C 112 (2008) 1146-1157.
[9]G. Hoogers, Catalysts for the Proton Exchange Membrane Fuel Cell (2003).
[10] F. Rodriguez-Reinoso, The role of carbon materials in heterogeneous catalysis, Carbon 36 (1998) 159-175.
[11] S.H. Joo, C. Pak, D.J. You, S.A. Lee, H.I. Lee, J.M. Kim, H. Chang, D. Seung, Ordered mesoporous carbons (OMC) as supports of electrocatalysts for direct methanol fuel cells (DMFC): Effect of carbon precursors of OMC on DMFC performances, Electrochimica Acta 52 (2006) 1618-1626.
[12]B.M. Babic, L.M. Vracar, V. Radmilovic, N.V. Krstajic, Carbon cryogel as support of platinum nano-sized electrocatalyst for the hydrogen oxidation reaction, Electrochimica Acta 51 (2006) 3820-3826.
[13]C.H. Li, Z.X. Yu, K.F. Yao, S.F. Ji, J. Liang, Nitrobenzene hydrogenation with carbon nanotube-supported platinum catalyst under mild conditions, Journal of Molecular Catalysis a-Chemical 226 (2005) 101-105.
[14] Y. Takasu, T. Kawaguchi, W. Sugimoto, Y. Murakami, Effects of the surface area of carbon support on the characteristics of highly-dispersed Pt-Ru particles as catalysts for methanol oxidation, Electrochimica Acta 48 (2003) 3861-3868.
[15]H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang, D. Wilkinson, A review of anode catalysis in the direct methanol fuel cell, Journal of Power Sources (2006).
[16]H. Yamada, T. Hirai, I. Moriguchi, T. Kudo, A highly active Pt catalyst fabricated on 3D porous carbon, Journal of Power Sources 164 (2007) 538-543.
[17]K.Y. Chan, J. Ding, J.W. Ren, S.A. Cheng, K.Y. Tsang, Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells, Journal of Materials Chemistry 14 (2004) 505-516.
[18]X. Wang, M. Waje, Y.S. Yan, CNT-based electrodes with high efficiency for PEMFCs, Electrochemical and Solid State Letters 8 (2005) A42-A44.
[19]G. Velayutham, J. Kaushik, N. Rajalakshmi, K.S. Dhathathreyan, Effect of PTFE content in gas diffusion media and microlayer on the performance of PEMFC tested under ambient pressure, Fuel Cells 7 (2007) 314-318.
[20]http://www.ballard.com/.
[21]T.A. Zawodzinski, R.A. Osteryoung, donor-aceptor properties of ambient-temperature chloroaluminate melts, Inorganic Chemistry 28 (1989) 1710-1715.
[22]Y.W.R.a.a.S. Srinivasan, Mass Transport Phenomena in Proton Exchange Membrane, journal of The Electrochemical Society 141 (1994) 2089-2096.
[23]Down M. BernardiandMark W. Verbrugge, A Mathematical Model of the Solid-Polymer-Electrolyte, journal of electrochemical society 139 (1992) 2477-2491.
[24]J. Thomas A. Zawodzinski, Charles Derouin, Susan Radzinski, Ruth J. Sherman,, T.E.S. Van T. Smith and Shimshon Gottesfeld, water uptake by and transport through, J. Electrochem. Soc. 140 (1993) 1041-1047
[25]Junbom Kim, Seong-Min Lee, and Supramaniam Srinivasan, Modeling of Proton Exchange Membrane Fuel Cell, journal of The Electrochemical Society 142 (1995) 2670-2674.
[26]L.R.F. Allen J.Bard, electrochemical methods fundamentals and applications, JOHN WILEY & SONS,INC (2001) 27.
[27]J.S. Newman, Electrochemical systems, Prentice-Hall, Inc (1991) 380.
[28]林賜岱, 直接甲醇燃料電池陽極反應機制之研究, 國立台灣科技大學化學工程系碩士論文 (2002).
[29]L.R.F. A.J. Bard, Electrochemical methods fundamentals and applications, Wiley, New York (2001).
[30]A.m.o.b. C. M. Brett, Electrochemistry-Principles, Methods, and Applications, Oxford, New York (1993) 405.
[31]A.m.o.b. C. M. Brett, Electrochemistry-Principles, methods, and appoications, Oxford, New York (1993) 234.
[32]Honji, T. Mori, Y. Hishinuma, platinum dispersed on carbon catalyst for a fuel-cell-a preparation with sorbitan monolaurate, Journal of The Electrochemical Society 137 (1990) 2084-2088.
[33]I. Kim, S. Bong, S. Woo, R.K. Mahajan, H. Kim, Highly active 40 wt.% PtRu/C anode electrocatalysts for PEMFCs prepared by an improved impregnation method, International Journal of Hydrogen Energy 36 (2011) 1803-1812.
[34]L. Calvillo, V. Celorrio, R. Moliner, M.J. Lazaro, Influence of the support on the physicochemical properties of Pt electrocatalysts: Comparison of catalysts supported on different carbon materials, Materials Chemistry and Physics 127 (2011) 335-341.
[35]F.J. Nores-Pondal, I.M.J. Vilella, H. Troiani, M. Granada, S.R. de Miguel, O.A. Scelza, H.R. Corti, Catalytic activity vs. size correlation in platinum catalysts of PEM fuel cells prepared on carbon black by different methods, International Journal of Hydrogen Energy 34 (2009) 8193-8203.
[36]D. Jung, S. Beak, K. Nahm, P. Kim, Enhancement of oxygen reduction activity by sequential impregnation of Pt and Pd on carbon support, Korean Journal of Chemical Engineering 27 (2010) 1689-1694.
[37]M.K. Jeon, P.J. McGinn, Effect of Ti addition to Pt/C catalyst on methanol electro-oxidation and oxygen electro-reduction reactions, Journal of Power Sources 195 (2010) 2664-2668.
[38]T.J. Schmidt, M. Noeske, H.A. Gasteiger, R.J. Behm, P. Britz, H. Bonnemann, PtRu alloy colloids as precursors for fuel cell catalysts - A combined XPS, AFM, HRTEM, and RDE study, Journal of The Electrochemical Society 145 (1998) 925-931.
[39]M.J. Escudero, E. Hontanon, S. Schwartz, M. Boutonnet, L. Daza, Development and performance characterisation of new electrocatalysts for PEMFC, Journal of Power Sources 106 (2002) 206-214.
[40]L.S. Stephen Brunauer, Deming, W. Wdwards Deming and Wdward Teller, On a Theory of the van der Waals Adsorption of Gases, journal of the american chemical society 62 (1940) 1723-1732.
[41]P.H.E.a.G.W.u. Stephen Brunauer, Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc 60 (1938) 309-319.
[42]E. Barrett, L. Joyner, P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, Journal of the American Chemical Society 73 (1951) 373-380.
[43]A.G. Rinzler, J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tomanek, P. Nordlander, D.T. Colbert, R.E. Smalley, unraveling nanotubes-fieled-emission from an atomic wire, Science 269 (1995) 1550-1553.
[44]A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben, Storage of hydrogen in single-walled carbon nanotubes, Nature 386 (1997) 377-379.
[45]J.H. Hafner, C.L. Cheung, T.H. Oosterkamp, C.M. Lieber, High-yield assembly of individual single-walled carbon nanotube tips for scanning probe microscopies, Journal of Physical Chemistry B 105 (2001) 743-746.
[46]L.P. Biro, S. Lazarescu, P. Lambin, P.A. Thiry, A. Fonseca, J.B. Nagy, A.A. Lucas, Scanning tunneling microscope investigation of carbon nanotubes produced by catalytic decomposition of acetylene, Physical Review B 56 (1997) 12490-12498.
[47]T. Morimoto, K. Hiratsuka, Y. Sanada, K. Kurihara, Electric double-layer capacitor using organic electrolyte, Journal of Power Sources 60 (1996) 239-247.
[48]I. Dumitrescu, P.R. Unwin, J.V. Macpherson, Electrochemistry at carbon nanotubes: perspective and issues, Chemical Communications (2009) 6886.
[49]S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.
[50]C. Journet, P. Bernier, Production of carbon nanotubes, Applied Physics A: Materials Science & Processing 67 (1998) 1-9.
[51]P.N.T. T. Guo, D.T. Colbert, R.E. Smalley, Catalytic growth of single-walled nanotubes by laser vaporization, Chemical physics letters 243 (1995) 49-54.
[52]J. Sengupta, C. Jacob, Growth temperature dependence of partially Fe filled MWCNT using chemical vapor deposition, Journal of Crystal Growth 311 (2009) 4692-4697.
[53]W.L. Holstein, The roles of ordinary and soret diffusion in the metal-catalyzed formation of filamentous carbon, Journal of Catalysis 152 (1995) 42-51.
[54]D.L.W. Frank A. Stephens, John P. Hager, Monitoring iron carbide Mijssbauer spectroscopy, Nuclear Instruments and Methods in Physics Research B76 (1993) 354-356.
[55]E.C. Vermisoglou, G.N. Karanikolos, G. Pilatos, E. Devlin, G.E. Romanos, C.M. Veziri, N.K. Kanellopoulos, Aligned Carbon Nanotubes with Ferromagnetic Behavior, Advanced Materials 22 (2010) 473
[56]R. Massart, V. Cabuil, effect of some parameters on the formation of colloidal magnetite in alkaline-medium-yield and particle-size control, Journal De Chimie Physique Et De Physico-Chimie Biologique 84 (1987) 967-973.
[57]王思婷, 具核殼結構的磁性微脂粒之熱效應研究, 國立成功大學化學工程系碩士論文 (2008).
[58]X. Wang, W. Li, Z. Chen, M. Waje, Y. Yan, Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell, Journal of Power Sources 158 (2006) 154-159.
[59]G.N. P. Scherrer, 2 (1918) 98.
[60]B.J. Hwang, S.M.S. Kumar, C.H. Chen, Monalisa, M.Y. Cheng, D.G. Liu, J.F. Lee, An investigation of structure-catalytic activity relationship for Pt-Co/C bimetallic nanoparticles toward the oxygen reduction reaction, Journal of Physical Chemistry C 111 (2007) 15267-15276.
[61]J.B. Joo, Y.J. Kim, W. Kim, N.D. Kim, P. Kim, Y. Kim, Y.W. Lee, J. Yi, Preparation of Pt-Co catalysts on mesoporous carbon and effect of alloying on catalytic activity in oxygen electro-reduction, Korean Journal of Chemical Engineering 25 (2008) 431-436.
[62]S. Li, L. Zhang, J. Kim, M. Pan, Z. Shi, J. Zhang, Synthesis of carbon-supported binary FeCo–N non-noble metal electrocatalysts for the oxygen reduction reaction, Electrochimica Acta 55 (2010) 7346-7353.
[63]L.R.F. Allen. J. Bard, Electrochemical methods fundamentals and applications, Wiley, New York (2001) 99.
[64]T. Matsumoto, T. Komatsu, K. Arai, T. Yamazaki, M. Kijima, H. Shimizu, Y. Takasawa, J. Nakamura, Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes, Chemical Communications (2004) 840.
[65]Z. Tang, D.H.C. Chua, Investigation of Pt/CNT-Based Electrodes in Proton Exchange Membrane Fuel Cells Using AC Impedance Spectroscopy, Journal of The Electrochemical Society 157 (2010) B868.
[66]C.K.P. Zhe Tang, Zhiqun Tiah, Jianyi Lin, How Y. Ng, Daniel H.C. Chua, In situ grown carbon nanotubes on carbon paper as integrated gass diffusion and catalyst layer for proton exchange membrane fuel ceells, Electrochimica Acta 56 (2011) 4327-4334.
[67]http://www.jeea.or.jp/course/contents/09402/ 日本電氣技術者協會