簡易檢索 / 詳目顯示

研究生: 陳冠宇
Chen, Guan-Yu
論文名稱: 磨潤、抗腐蝕及導電性質於CrCx與CrAlxC鍍層及應用於燃料電池金屬雙極板之研究
Tribological, anti-corrosion and electrical conductivity properties of CrCx and CrAlxC coatings and their application to metal bipolar plates for fuel cells.
指導教授: 蘇演良
Su, Yean-Liang
共同指導教授: 高文顯
Kuo, Wen-Hsien
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 77
中文關鍵詞: CrC鍍層磨潤抗腐蝕雙極板
外文關鍵詞: CrC coating, Tribological property, Corrosion, Bipolar plates
相關次數: 點閱:163下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以射頻RF非平衡磁控濺鍍,鍍製CrCx和CrAlxC鍍層在不銹鋼316L底材上,研究其鍍層的晶體結構、基本性質、機械性質、磨潤性質與燃料電池雙極板之性質分析,最後根據2020年美國能源部(DOE)之標準規範,進行商業化評測作為新的研究項目。本研究之實驗結果分為二個階段,第一階段為CrCx鍍層,經實驗分析後選擇最佳雙極板性質之鍍層添加Al元素,因此第二階段為CrAlxC鍍層,將比較鍍層添加Al前後之性質變化,另外將同樣條件的CrAlxC鍍層進行退火熱處理,比較熱處理前後之雙極板性質差異,代號就以CrAlxC-H表示。
    CrCx鍍層隨著乙炔增加,硬度是逐漸降低但其附著性卻有明顯的改善。磨耗試驗以CrC35鍍層擁有最佳磨潤性質,其有最低的摩擦係數(0.07)、磨耗深度(0.64μm)和磨耗率(2.7×10-6 mm3/Nm)。在雙極板性質測試中,以CrC25鍍層顯示最低的電流密度(7×10-8 A/cm2),具有最佳的耐腐蝕性;導電測試中也是CrC25鍍層具最高的導電率(2.5×104 S-cm-1);而在接觸電阻測試中,CrC25鍍層與碳紙之間在140 N cm-2的壓力下的接觸電阻為7.2mΩ-cm2,因此CrC25鍍層的腐蝕電流密度(<1μA/cm2)、導電率(>100 S-cm-1)和接觸電阻(<10mΩ-cm2)皆滿足DOE的規範要求。
    添加鋁的CrAlxC鍍層其硬度有些許的提升,但是附著性卻是明顯得下降,其中CrAl1C鍍層具有最佳的磨潤性質,其擁有最低的摩擦係數(0.12)、磨耗深度(0.57μm)和磨耗率(2.97×10-6 mm3/Nm)。在雙極板性質測試中,同樣是CrAl1C鍍層顯示最低的電流密度(2.31×10-5 A/cm2);導電性測試也是CrAl1C鍍層顯示了最高的導電率(1.48×104 S-cm-1);在接觸電阻測試中,CrAl1C鍍層的接觸電阻則為6.9mΩ-cm2,因此雖然CrAl1C鍍層的導電率和接觸電阻,皆有滿足DOE的規範要求,但是其腐蝕電流密度(<1μA/cm2)卻不滿足規範要求。而在經過熱處理之後的CrAlxC-H鍍層,僅有導電性質有些許的提升,其抗腐蝕性及接觸電阻皆因為熱處理後性質變差。

    CrCx coatings (where x indicates the acetylene flux rate) were deposited on stainless steel 316L substrate with different carbon contents using radio frequency unbalanced magnetron sputtering. The X-ray diffraction results of CrCx coating exhibited Cr7C3 and metal Cr crystalline phase. The hardness of coating gradually decreased as the acetylene flow rate increased from 5 to 35 sccm. However, the adhesion of coating gradually promotes with acetylene increased. The CrC35 coating exhibited the lowest friction coefficient (0.07)、
    wear depth (0.64μm) and wear rate (2.7×10−6 mm3/Nm). The CrC25 sample with the best anti-corrosion property displays the lowest current density (7×10−8 A/cm2) which is 36 times lower than uncoated substrate (2.52×10−6 A/cm2). The interfacial contact resistance (ICR) between CrC25 sample and carbon paper was measured 7.2 mΩ-cm2 under 140 N cm−2 compaction forces. The corrosion currents (<1μA/cm2) and ICR (<10 mΩ-cm2) of CrC25 coating satisfy the targets requirement of U.S. department of energy.
    The hardness of the CrAlxC coating is slightly improved, but the adhesion is significantly reduced. Among them, the CrAl1C coating has the best wear properties, and it has the lowest friction coefficient (0.12), wear depth (0.57μm) and wear rate (2.97×10-6 mm3/Nm). In the bipolar plate property test, the CrAl1C coating showed the lowest current density (2.31×10−5 A/cm2) and the highest conductivity (1.48×104 S-cm-1). In the ICR test, the contact resistance of the CrAl1C coating is 6.9mΩ-cm2. Therefore, although the conductivity and contact resistance of the CrAl1C coating meet the (DOE) specifications. However, the corrosion current density (<1μA/cm2) of the CrAl1C coating doesn’t meet the specification requirements.

    口試合格證明 I 中文摘要 II Extended Abstract III 誌謝 XIV 總目錄 XV 表目錄 XVII 圖目錄 XVIII 第一章 緒論 1 第二章 理論探討與文獻回顧 4 2-1 RF射頻磁控濺鍍 4 2-2 國外CrC鍍層研究發展 4 2-3 國內CrC鍍層研究發展 5 2-4 CrAlC鍍層與材料 6 2-5 雙極板鍍層研究發展 7 2-5-1 Ti與Cr系列雙極板鍍層比較與選用 8 2-5-2雙極板CrC鍍層研究 10 2-6 研究重要性 11 2-7 研究目的 11 第三章 實驗方法與步驟 12 3-1 實驗目的 12 3-2 實驗流程 13 3-3 試片準備 14 3-4 鍍層製備 14 3-4-1參數設計 14 3-4-2 鍍層濺鍍 15 3-5 實驗方法 16 3-5-1成分分析 16 3-5-2結構分析 16 3-5-3機械性質與附著性分析 17 3-5-4磨耗試驗 17 3-5-5表面粗糙度分析 18 3-5-6燃料電池雙極板試驗分析 18 3-6 實驗設備與廠商資訊 20 第四章 實驗結果與討論 22 4-1 第一階段: CrCx鍍層 22 4-1-1 CrCx鍍層之元素分析 22 4-1-2 CrCx鍍層之XRD結構分析 22 4-1-3 CrCx鍍層之XPS化學能分析 23 4-1-4 CrCx鍍層之拉曼光譜分析 23 4-1-5 CrCx鍍層斷面與表面形貌以及基本性質分析 24 4-1-6 CrCx鍍層之機械性質 25 4-1-7 CrCx鍍層之磨潤性質 27 4-1-8 CrCx鍍層之雙極板應用性質 31 4-1-9第一階段結論 33 4-2 第二階段: CrAlxC鍍層與熱處理前後之雙極版應用性質比較 34 4-2-1 CrAlxC鍍層元素分析 34 4-2-2 CrAlxC鍍層之XRD結構分析 34 4-2-3 CrAlxC鍍層之XPS化學能分析 34 4-2-4 CrAlxC鍍層之拉曼光譜分析 35 4-2-5 CrAlxC鍍層斷面與表面形貌及基本性質分析 35 4-2-6 CrAlxC鍍層之機械性質 36 4-2-7 CrAlxC鍍層之磨潤性質 37 4-2-8 CrAlxC鍍層之雙極板應用性質 39 4-2-9第二階段結論 41 第五章 結論 43 第六章 未來展望與發展 44 參考文獻 45

    [1] 邱松茂,吳政道,林天財,羅萬中,表面處理技術在模具之應用及發展。
    [2] 國家奈米元件實驗室,物理氣相沉積(PVD)介紹。
    [3] L. Yate, L. Martínez-de-Olcoz, J. Esteve, A. Lousa, Surf. Coat. Technol 206, (2012), 2877-2883.
    [4] J. Romero, E. Martınez, J. Esteve, A. Lousa, Surf. Coat. Technol 180-181, (2004), 335-340.
    [5] Chun-Chun Lin, Jyh-Wei Lee, Ku-Ling Chang, Wei-Jen Hsieh, Chih-Yuan Wang, Yee-Shyi Chang, Han C. Shih, Surf. Coat. Technol 200, (2006) ,2679 -2685.
    [6] D. Martínez-Martínez, C. López-Cartes, A. Fernández, J.C. Sánchez-López. Thin Solid Films., 517, (2009), 1662-1671.
    [7] A. Paul, Jongmin Lim, Kyunsuk Choi, Chongmu Lee. Materials Science and Engineering., 332, (2002), 123-128.
    [8] Nils Nedfors, Olof Tengstrand, Erik Lewin, Andrej Furlan, Per Eklund, Lars Hultman, Ulf Jansson. Surface & Coatings Technology., 206, (2011), 354-359.
    [9] Ying Long, AtharJaved, JieChen, Zhao-keChen, XiangXiong. Ceramics International., 40, (2014), 707-713.
    [10] VANDNA AGARWAL, D. ANKAR, K. L. HOPR, Thin Solid Films 169, (1989), 281 -288.
    [11] C. Ziebert, J. Ye, Stüber, S. Ulrich, M. Edinger, Barzen Surf. Coat. Technol 205, (2011), 4844-4849.
    [12] B. Xiao, J.D. Xing, J. Feng, Y.F. Li, C.T. Zhou, W. Su, X.J. Xie, Y.H. Chen. Physica B., 403, (2008), 2273-2281.
    [13] Jia-ying Xie, Nan-xian Chen, Jiang Shen, Lidong Teng, Seshadri Seetharaman, Acta Materialia., 53, (2005), 2727-2732.
    [14] Y.L. Su, T.H. Liu, C.T. Su, T.P. Cho. Materials Science and Engineering., A346, (2004), 188-197.
    [15] W.H. Kao, Y.L. Su, S.H. Yao. Vacuum., 80, (2006), 604-614.
    [16] G.M.Bakić, V.Maksimović, A.Maslarević, M.B.Djukić, B.Rajičić, A. Djordjević. Metallurgical & Materials Engineering Congress of South-East Europe. 2015.
    [17] Mohsen Hossein-Zadeh, Omid Mirzaee, Hamidreza Mohammadian-Semnani, Ceramics International 45, (2019), 7446-7457.
    [18] Michel W. Barsoum, Prog. Solid St. Chem 28, (2000), 201-281.
    [19] Per Eklund, Manfred Beckers, Ulf Jansson, Hans Högberg, Lars Hultman, Thin Solid Films 518, (2010) ,1851-1878.
    [20] Michel W. Barsoum, Miladin Radovic, Annual Review of Materials Research 41, (2011), 195-227.
    [21] Miladin Radovic, Michel W. Barsoum, American Ceramic Society Bulletin 92, No. 3.
    [22] M. Roknuzzaman, M.A. Hadi, M.J. Abden, M.T. Nasir, A.K.M.A. Islam, M.S. Ali, K. Ostrikov, S.H. Naqib, Computational Materials Science 113, (2016), 148-153.
    [23] Z-M Sun, International Materials Reviews 56, (2011), 143-166.
    [24] Heli Wang, Mary Ann Sweikart, John A. Turner, Journal of Power Sources 115, (2003), 243-251.
    [25] W. Smith, Journal of Power Sources 86, (2000), 74-83.
    [26] 賀庭筠,質子交換膜燃料電池(PEMFC)的發展現況
    [27] 台灣燃料電池資訊網燃料電池介紹 http://www.tfci.org.tw/Fc/
    [28] G. Hinds, E. Brightman, nternational journal of hydrogen energy 40, (2015), 2785 -2791.
    [29] Johan Andre´, Laurent Antoni, Jean-Pierre Petit, international journal of hydrogen energy 35, (2010), 3684-3697.
    [30] Wikimedia commons, Solid oxide fuel cell protonic, (2012).
    [31] E. BRIGHTMAN, G. HINDS, Queen’s Printer and Controller of HMSO, (2013), 1754-2979.
    [32] Amit C. Bhosale, Raghunathan Rengaswamy, Renewable and Sustainable Energy Reviews 115, (2019), 109-351.
    [33] Nur Fawwaz Asri, Teuku Husaini, Abu Bakar Sulong, Edy Herianto Majlan, Wan Ramli Wan Daud, internation a l journal of hydrogen energy 42, (2017), 9135-9148.
    [34] Renato A. Antunes, Mara Cristina L. Oliveira, Gerhard Ett, Volkmar Ett, international journal of hydrogen energy 35, (2010), 3632-3647.
    [35] Peiyun Yi, Xiaobo Li, Li Yao, Fan Fan, Linfa Peng, Xinmin Lai, Energy Conversion and Management 183, (2019), 65-72.
    [36] S. Pugal Mani, N. Rajendran, Energy 133, (2017), 1050-1062.
    [37] Yafei Chang, Yanzhou Qin, Yan Yin, Junfeng Zhang, Xianguo Li, Applied Energy 230, (2018), 643-662.
    [38] Xueqin Lü, Yan Qu, Yudong Wang, Chao Qin, Gang Liu, Energy Conversion and Management 171, (2018), 1273-1291.
    [39] Nathanial J. Cooper, Travis Smith, Anthony D. Santamaria, Jae Wan Park, international journal of hydrogen energy 41, (2016), 1213-1223.
    [40] Johan Andre´, Laurent Antonia, Jean-Pierre Petit, Eric De Vito, Alexandre Montani, international journal of hydrogen energy 34, (2009), 3125-3133.
    [41] Reeshab Goenka, Suparna Mukherji, Prakash C. Ghosh, Bioresource Technology Reports 3, (2018), 67-74.
    [42] Hsi-Chao Chen, Der-Jun Jan, Jyun-Huei Lin, Min-Chuan Wang, Solar Energy Materials and Solar Cells 203, (2019), 110-158.
    [43] 楊啟榮,濺鍍技術原理,國立台灣師範大學。
    [44] 郭長谷,磁控濺鍍機原理。
    [45] Abegunde Olayinka O, Akinlabi Esther, Oluseyi P. Oladijo, Procedia Manufacturing 35, (2019), 950-955.
    [46] 吳政璋, Sputter 機台介紹,台灣大學機械系。
    [47] Soner Özen, Volkan Şenay, Optik - International Journal for Light and Electron Optics 201, (2020), 163-433.
    [48] Chun-Te Wu, Ying-Rong Ho, Da-Zhan Huang, Jung-Jie Huang, Surface & Coatings Technology 360, (2019), 95-102.
    [49] Yong Seob Park, Tae-Hwan Jung, Dong-Gun Lim, Young Park, Hyungchul Kim, Won Seok Choi, Materials Research Bulletin 47, (2012), 2784-2787.
    [50] Yong Zhao, Lin Wei, Peiyun Yi, Linfa Peng, international journal of hydrogen energy 41, (2016), 1142 -1150.
    [51] Wei Dai, Se-Hun Kwon, Qimin Wang, Jingmao Liu, Thin Solid Films 647, (2018), 26-32.
    [52] K.M. Jiang, D.Q. Zhao, X. Jiang, Q. Huang, L.J. Miao, H.M. Lu, Y. Li, Journal of Alloys and Compounds 750, (2018), 560-569.
    [53] V.A. Safonov, H. Habazaki, P. Glatzelc, L.A. Fishgoit, O.A. Drozhzhin, S. Lafuerza, O.V. Safonova, Applied Surface Science 427, (2018), 566-572.
    [54] Kemal Korkmaz, Surf. Coat. Technol 272, (2015), 1-7.
    [55] Luis Yate, Leyre Martínez-de-Olcoz, Joan Esteve, Arturo Lousa, Applied Surface Science, 420 (2017), 707-713.
    [56] Chenkai Liu, Hongbo Ju, Peixian Han, Chundian Quan, ChangPan Mo, Yong Zhao, Yaoxiang Geng, Junhua Xu, Lihua Yu, Vacuum 178, (2020), 109368.
    [57] Y.L. Sua, T.H. Liu, C.T. Su, T.P. Cho, Materials Science and Engineering A364, (2004), 188-197.
    [58] 黃世耀,碳化鉻硬質薄膜再封裝模具之應用研究,國立中興大學材料工程研究所,碩士論文, (1999).
    [59] 侯光煦,脈衝電鍍Cr-C自潤滑複合鍍層製程發展與磨潤特性研究,國防大學動力及系統工程學系,科技部計畫,(2016).
    [60] 陳翊銓,利用非平衡磁控濺鍍法蒸鍍CrC與CrCN薄膜於氮氧化處理JIS SKD11工具鋼之研究,國立台北科技大學,碩士論文,(2014).
    [61] 葉瀚文,利用非平衡磁控濺鍍Cr-C-N薄膜機械性質之研究,國立高雄第一科技大學,碩士論文(2011).
    [62] Walter.C , Sigumonrong.D.P. , El-Raghy.T. , Schneider.J.M , Thin Solid Films 515, (2006), 389-393.
    [63] Z.J. Lin, M.S. Li, J.Y. Wang, Y.C. Zhou, Acta Materialia 55, (2007), 6182-6191.
    [64] Xin-sheng Wang, Zhen-lin Lu, Gao-ting Lin, Lei Jia, Jiang-xian Chen, Results in Physics 6, (2016), 789-795.
    [65] A. Shamsipoor, M. Farvizi, M. Razavi, A. Keyvani, Journal of Alloys and Compounds 815, (2020), 152345.
    [66] Michael Ougier, Alexandre Michau, Fernando Lomello, Fr_ed_eric Schuster, Hicham Maskrot, Michel L. Schlegel, Journal of Nuclear Materials 528, (2020), 151855.
    [67] M.R. Field, P. Carlsson, P. Eklund, J.G. Partridge, D.G. McCulloch, D.R. cKenzie, M.M.M. Bilek, Surface & Coatings Technology 259, (2014), 746-750.
    [68] J. Gonzalez-Julian, J. Llorente, M. Bram, M. Belmonte, O. Guillon, Journal of the European Ceramic Society 37, (2017), 467-475.
    [69] Zhenyu Wang, Guanshui Ma, Linlin Liu, Li Wang, Peiling Ke, Qunji Xue, Aiying Wang, Corrosion Science 167, (2020), 108492.
    [70] Michael Ougier, Alexandre Michau, Fernando Lomello, Frederic Schuster, Hicham Maskrot, Michel L. Schlegel, Journal of Nuclear Materials 528, (2020), 151855.
    [71] C.L. Yeh, Y.C. Chen, Ceramics International 44, (2018), 384-389.
    [72] Kung-Hsu Hou, Chien-Hung Lin, Ming-Der Ger, Sheau-Wen Shiah, Hsi-Ming Chou, international journal of hydrogen energy 37, (2012), 3890-3896.
    [73] Z.C. Luo, J.P. Ning, J. Wang, K.H. Zheng, Wear 432-433, (2019), 202970.
    [74] Zifei Ni, Yangshan Sun, Feng Xue, Jian Zhou, Jing Bai, Materials Science and Engineering A 528, (2011), 5664-5669.
    [75] Peiyun Yi, Linfa Peng, Tao Zhou, Hao Wu, Xinmin Lai, Journal of Power Sources 230, (2013), 25-31.
    [76] Zhiyuan Wang, Yibo Wang, Zhuguo Li, Kai Feng, Jian Huang, Fenggui Lu, Chengwu Yao, Xun Cai, YixiongWu, Surface & Coatings Technology 258, (2014), 1068-1074.
    [77] Weixin Zhang, Peiyun Yi, Linfa Peng, Xinmin Lai, Energy 162, (2018), 933-943.
    [78] J.L. Lu, Nadeem Abbas, J.N. Tang, Jie Tang, G.M. Zhu, Corrosion Science 158, (2019), 108106.
    [79] Yu Fu, Guoqiang Lin, Ming Hou, Bo Wu, Zhigang Shao, Baolian Yi, international journal of hydrogen energy 34, (2009), 405-409.
    [80] R. Li, Y. Cai, K. Wippermana, W. Lehnert, ECS Transactions 85, (2018), 585-598.
    [81] Hsiang-Cheng Wang, ung-Hua Sheu, hen-En Lu, ung-Hsu Hou, ing-Der Ger, Journal of Power Sources 293, (2015), 475-483.
    [82] 陳育慶,以粉浴鉻化法製備鐵基雙極板之特性研究,國防大學理工學院化學及材料工程學系,國科會計畫,(2010).
    [83] https://kknews.cc/zh-tw/news/3aqj8l3.html.
    [84] https://kknews.cc/news/95vqjv5.html.
    [85] T. apauw, K. Lambrinou, T. Cabioc’h, J. Halim, J. Lu, A. Pesach, O. Rivin, O. Ozeri, E.N. Caspi, L. Hultman, P. Eklund, J. Rosén, M.W. Barsoum, J. Vleugels, Journal of the European Ceramic Society 36, (2016), 1847-1853.
    [86] Jingzhou Liu, Xiao Zuo, Zhenyu Wang, Li Wang, Xiaochun Wu, Peiling Ke, Aiying Wang, Journal of Alloys and Compounds, 753, (2018), 11-17.
    [87] Fanyong Zhang, Shu Yan, Chao Li, Yi Ding, Jining He, Fuxing Yin, Journal of the European Ceramic Society, 39, (2019), 5132-5139.
    [88] C. Liu, Q. Bi, A. Leyland, A. Matthews, Corrosion Science 45, (2003), 1257-1273.
    [89] 楊聰仁,腐蝕電化學分析, 材料基礎實驗。
    [90] Peng Liang, Diankai Qiu, Linfa Peng, Peiyun Yi, Xinmin Lai, Jun Ni. Energy Conversion and Management., 169, (2018), 334-344.
    [91] T. Haque, A. Morina, A. Neville, Surface & Coatings Technology, 204, (2010), 4001-4011.
    [92] Weine Olovsson, Björn Alling, Martin Magnuson. The Journal of Physical Chemistry C., 120, (2016), 12890-12899.
    [93] Alexander G. Kvashnin, Artem R. Oganov, Artem I. J. Phys. Chem. Lett., 8, (2017), 755-764.
    [94] D. Music, U. Kreissig, R. Mertens, J.M. Schneider. Physics Letters A., 326, (2004), 473-476.
    [95] Martin Magnuson, Matilda Andersson, Jun Lu, Lars Hultman, Ulf Jansson. Condensed Matter., 24, (2012), 225004.
    [96] Andrea Carlo Ferrari. Diamond and Related Materials., 11, (2002), 1053-1061.
    [97] S. Urbonaite, L. Ha¨ lldahl, G. Svensson. CARBON., 46, (2008),1942-1947.
    [98] C. Casiraghi, F. Piazza, A.C. Ferrari, D. Grambole, J. Robertson. Diamond & Related Materials., 14, (2005), 1098-1102.
    [99] C. Casiraghi, A. C. Ferrari, J. Robertson. PHYSICAL REVIEW., 72, (2005), 085401.
    [100] Wei Dai, He Zheng, Guosong Wu, Aiying Wang. Vacuum., 85, (2010), 231-235.
    [101] A. C. Ferrari, J. Robertson. PHYSICAL REVIEW., 61, (2000), 14095.
    [102] B. Ren, Z.X. Liu, L. Shi, B. Cai, M.X. Wang. Applied Surface Science., 257, (2011), 7172-7178.
    [103] Tingguang Liu, Shuang Xia, Qin Bai, Bangxin Zhou, Yonghao Lu, Tetsuo Shoji. Materials., 12, (2019), 242.
    [104] M. Braic, M. Balaceanu, A. Vladescu, C.N. Zoita, V. Braic. Applied Surface Science., 284, (2013), 671-678.
    [105] C. F. Lv, G. F. Zhang, B. S. Cao, Y. Y. He, X. D. Hou, Z. X. Song. Surface Engineering., 19, (2016), 541-546.
    [106] Y.J. Zhou, Y. Zhang, T.N. Kim, G.L. Chen. Materials Letters., 62, (2008), 2673-2676.
    [107] J. Rao, T. Rose, M. Craig, J. R. Nicholls. Procedia CIRP., 22, (2014), 277-280.
    [108] A. Leyland, A. Matthews. Wear., 245, (2000), 1-11.
    [109] Jun Guo, Huaiyong Wang a, Fanping Meng, Xiang Liu, Feng Huang. Surface and Coatings Technology., 228, (2013), 68-75.
    [110] Nur Fawwaz Asri, Teuku Husaini, Abu Bakar Sulong, Edy Herianto Majlan, Wan Ramli Wan Daud, International journal of hydrogen energy., 42, (2017), 9135-9148.
    [111] Lisbeth R. Hilbert, Dorthe Bagge-Ravn, John Kold, Lone Gram. International Biodeterioration & Biodegradation., 52, (2003), 175-185.
    [112] A. S. Toloei, V. Stoilov, D. O. Northwood. MATERIALS CHARACTERISATION., 355, (2015).
    [113] Rujin Tian, Juncai Sun., International journal of hydrogen energy., 36, (2011), 6788-6794.
    [114] 屠元佑,矽鉻靶材及濺鍍條件對薄膜電組特性影響之研究,義守大學,碩士論文(2011)。
    [115] U.S department of energy. Fuel Cell Technologies Office. Energy Efficiency & Renewable Energy., (2020).
    [116] Bo Wu, Guoqiang Lin, Yu Fu, Ming Hou, Baolian Yi. International journal of hydrogen energy., 35, (2010), 3255-3261.
    [117] Nils Nedfors, Olof Tengstrand, Per Eklund, Lars Hultman, Ulf Jansson. J. Vac. Sci. Technol., 32, (2014), 41503.
    [118] Hyo-Soo Son, Nak-Jung Choi, Kyoung-Bo Kim, Moojin Kim, Sung-Nam Lee, Materials Research Bulletin, 82, (2016), 50-54.
    [119] Ayako Kimura, Hiroyuki Hasegawa, Kunihiro Yamada, Tetsuya Suzuki, Surface and Coatings Technology., 120-121, (1999), 438-441.
    [120] 廖啟民,鋁合金的腐蝕與防治,防蝕工程。
    [121] 陳昊仁,不同熱退火溫度與氫電漿處理時間對於氧化銦薄膜之研究,實務專題(2013)。

    無法下載圖示 校內:2026-01-05公開
    校外:2026-01-05公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE