| 研究生: |
黃隆樽 Huang, Lung-Tsun |
|---|---|
| 論文名稱: |
以化學氣相沉積法在銅鎳合金上製備石墨烯及其透明導電性質之研究 Synthesis of Graphene on Cu-Ni Alloy by Chemical Vapor Deposition for Transparent Conductive Properties |
| 指導教授: |
黃肇瑞
Huang, Jow-Lay |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 石墨烯 、銅鎳合金 、化學氣相沉積法 |
| 外文關鍵詞: | Graphene, Cu-Ni Alloy, Chemical Vapor Deposition |
| 相關次數: | 點閱:62 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
單層石墨烯具優異的光學穿透率、電子遷移率、穩定的化學特性等性質,但受限於自由電子濃度的不足,因此無法真正符合透明導電薄膜的應用。根據計算結果,10~20 層的石墨烯是最適合用在透明導電薄膜的範圍。本研究利用銅鎳合金箔作為催化金屬和基材,目的為控制石墨烯薄膜成長的層數。
首先研究預退火對基材晶粒尺寸及從優取向影響,結果顯示在高溫時合金中微量錳元素擴散至表面,並析出一層金屬,造成碳源與基材隔絕,而無法有效控制層數。因此第二部分,透過化學氣相沉積法直接成長數層石墨烯,藉由改變成長溫度、反應氣體流量及通入碳源時間。觀察到固定碳源通入時間,低於970 oC會得到非晶質石墨烯,於1000 oC以上則生成結晶化石墨烯。在約相同層數下,兩著的差異藉由穿透率及霍爾分析,得知結晶型擁有較好的表現。在最佳化的參數下,本研究可成長出高覆蓋率以及大面積(公分等級)的數層石墨烯,且藉由TEM鑑定,得到的層數在1~20層內。我們所成長出的石墨烯得到的最佳值為波長550 nm下光學穿透率約可達75%,量測到的片電阻約為181 Ω/sq。
Graphene having excellent optical transmittance, electron mobility, stable chemical properties and other properties, but is limited to the free electron concentration is insufficient and therefore can not meet the real application of the transparent conductive film. According to the results, 10 to 20 layers of graphene is the most suitable for use in a range of transparent conductive film. This study uses a copper-nickel alloy foil as a catalytic metal and the substrate, for the purpose of controlling the number of layers of graphene thin film growth.
The first study is on the substrate grain size and preferred orientation, the results show a layer of precipitated manganese at high temperatures, causing the carbon source and substrate isolation, and can not effectively control the number of layers. So the second part, changing parameters of the growth graphene by changing the growth temperature, the reaction gas flow and pass into carbon time. That is less than 970 oC may be an amorphous graphene, but higher than 1000 oC is crystal graphene. The two significant differences by transmittance and Hall analysis, that the crystalline form has better performance. Our study could grow a high coverage ratio and a large area (cm level) of several layers of graphene resulting in a number of layers to 20 layers. The best value under the optical transmittance wavelength of 550 nm up to about 75%, measured sheet resistance of about 181 Ω/sq.
[1] A. K. Geim and P. Kim, "Carbon wonderland," Scientific American, vol. 298, pp. 90-97, Apr 2008.
[2] M. Tinnesand, "Graphene:The Next Wonder Material?," ChemMatters, pp. 6-8, Oct 2012.
[3] H. P. Boehm, A. Clauss, G. O. Fischer, and U. Hofmann, "Das Adsorptionsverhalten sehr dünner Kohlenstoff-Folien," Inorganic Chemistry, vol. 316, pp. 119-127, Juli 1962.
[4] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., "Electric field effect in atomically thin carbon films," Science, vol. 306, pp. 666-669, Oct 22 2004.
[5] C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," Science, vol. 321, pp. 385-388, Jul 18 2008.
[6] J. H. Chen, C. Jang, S. D. Xiao, M. Ishigami, and M. S. Fuhrer, "Intrinsic and extrinsic performance limits of graphene devices on SiO2," Nature Nanotechnology, vol. 3, pp. 206-209, Apr 2008.
[7] T. Durkop, S. A. Getty, E. Cobas, and M. S. Fuhrer, "Extraordinary mobility in semiconducting carbon nanotubes," Nano Letters, vol. 4, pp. 35-39, Jan 2004.
[8] A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Reviews of Modern Physics, vol. 81, pp. 109-162, 2009.
[9] 蘇. 潘漢昌, 蕭健男, 蕭銘華, "透明導電膜簡介," 科儀新知, vol. 26, p. 46, 2004.
[10] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, et al., "A comprehensive review of ZnO materials and devices," Journal of Applied Physics, vol. 98, Aug 15 2005.
[11] A. Reina, X. T. Jia, J. Ho, D. Nezich, H. B. Son, V. Bulovic, et al., "Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition," Nano Letters, vol. 9, pp. 30-35, Jan 2009.
[12] C. C. Lu, C. H. Jin, Y. C. Lin, C. R. Huang, K. Suenaga, and P. W. Chiu, "Characterization of Graphene Grown on Bulk and Thin Film Nickel," Langmuir, vol. 27, pp. 13748-13753, Nov 15 2011.
[13] Z. R. Robinson, P. Tyagi, T. M. Murray, C. A. Ventrice, S. S. Chen, A. Munson, et al., "Substrate grain size and orientation of Cu and Cu-Ni foils used for the growth of graphene films," Journal of Vacuum Science & Technology A, vol. 30, Jan 2012.
[14] F. A. Lindemann, "The calculation of molecular vibration frequencies," Physik. Z., vol. 11, pp. 609-612, 1910.
[15] S. Banerjee, M. Sardar, N. Gayathri, A. K. Tyagi, and B. Raj, "Conductivity landscape of highly oriented pyrolytic graphite surfaces containing ribbons and edges," Physical Review B, vol. 72, Aug 2005.
[16] E. A. Obraztsova, A. V. Osadchy, E. D. Obraztsova, S. Lefrant, and I. V. Yaminsky, "Statistical analysis of atomic force microscopy and Raman spectroscopy data for estimation of graphene layer numbers," Physica Status Solidi B-Basic Solid State Physics, vol. 245, pp. 2055-2059, Oct 2008.
[17] C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, et al., "Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics," Journal of Physical Chemistry B, vol. 108, pp. 19912-19916, Dec 30 2004.
[18] W. A. de Heer, C. Berger, X. S. Wu, P. N. First, E. H. Conrad, X. B. Li, et al., "Epitaxial graphene," Solid State Communications, vol. 143, pp. 92-100, Jul 2007.
[19] C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, et al., "Electronic confinement and coherence in patterned epitaxial graphene," Science, vol. 312, pp. 1191-1196, May 26 2006.
[20] W. Strupinski, K. Grodecki, A. Wysmolek, R. Stepniewski, T. Szkopek, P. E. Gaskell, et al., "Graphene Epitaxy by Chemical Vapor Deposition on SiC," Nano Letters, vol. 11, pp. 1786-1791, Apr 2011.
[21] H. Y. He, J. Klinowski, M. Forster, and A. Lerf, "A new structural model for graphite oxide," Chemical Physics Letters, vol. 287, pp. 53-56, Apr 24 1998.
[22] D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, "Processable aqueous dispersions of graphene nanosheets," Nature Nanotechnology, vol. 3, pp. 101-105, Feb 2008.
[23] M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, and M. Ohba, "Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles," Carbon, vol. 42, pp. 2929-2937, 2004.
[24] V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, "High-throughput solution processing of large-scale graphene," Nature Nanotechnology, vol. 4, pp. 25-29, Jan 2009.
[25] X. L. Li, G. Y. Zhang, X. D. Bai, X. M. Sun, X. R. Wang, E. Wang, et al., "Highly conducting graphene sheets and Langmuir-Blodgett films," Nature Nanotechnology, vol. 3, pp. 538-542, Sep 2008.
[26] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, et al., "High-yield production of graphene by liquid-phase exfoliation of graphite," Nature Nanotechnology, vol. 3, pp. 563-568, Sep 2008.
[27] J. H. Lee, D. W. Shin, V. G. Makotchenko, A. S. Nazarov, V. E. Fedorov, Y. H. Kim, et al., "One-Step Exfoliation Synthesis of Easily Soluble Graphite and Transparent Conducting Graphene Sheets," Advanced Materials, vol. 21, pp. 4383-+, Nov 20 2009.
[28] C. J. Shih, S. C. Lin, M. S. Strano, and D. Blankschtein, "Understanding the Stabilization of Liquid-Phase-Exfoliated Graphene in Polar Solvents: Molecular Dynamics Simulations and Kinetic Theory of Colloid Aggregation," Journal of the American Chemical Society, vol. 132, pp. 14638-14648, Oct 20 2010.
[29] 陳. 張育唐, "化學氣相沉積法(Chemical Vapor Deposition)," 國科會高瞻自然科學教學資源平台, 2011.
[30] 賴致瑋, "利用電子迴旋共振化學氣相沉積法成長單層石墨與單層石墨的 P 型摻雜," 碩士論文, 民國九十九年.
[31] C. J. Hsu, P. K. Nayak, S. C. Wang, J. C. Sung, C. L. Wang, C. L. Wu, et al., "Spinodal Decomposition of Mono- to Few-Layer Graphene on Ni Substrates at Low Temperature," Journal of Nanoscience and Nanotechnology, vol. 12, pp. 2442-2447, Mar 2012.
[32] K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, "A roadmap for graphene," Nature, vol. 490, pp. 192-200, Oct 11 2012.
[33] A. E. Karu and M. Beer, "Pyrolytic Formation of Highly Crystalline Graphite Films," Journal of Applied Physics, vol. 37, pp. 2179-&, 1966.
[34] H. Gullapalli, A. L. M. Reddy, S. Kilpatrick, M. Dubey, and P. M. Ajayan, "Graphene Growth via Carburization of Stainless Steel and Application in Energy Storage," Small, vol. 7, pp. 1697-1700, Jun 20 2011.
[35] K. Yamamoto, M. Fukushima, T. Osaka, and C. H. Oshima, "Charge-Transfer Mechanism for the (Monolayer Graphite)/Ni(111) System," Physical Review B, vol. 45, pp. 11358-11361, May 15 1992.
[36] Z. P. Chen, W. C. Ren, B. L. Liu, L. B. Gao, S. F. Pei, Z. S. Wu, et al., "Bulk growth of mono- to few-layer graphene on nickel particles by chemical vapor deposition from methane," Carbon, vol. 48, pp. 3543-3550, Oct 2010.
[37] X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, et al., "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science, vol. 324, pp. 1312-1314, Jun 5 2009.
[38] S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, et al., "Roll-to-roll production of 30-inch graphene films for transparent electrodes," Nature Nanotechnology, vol. 5, pp. 574-578, Aug 2010.
[39] M. E. Ramon, A. Gupta, C. Corbet, D. A. Ferrer, H. C. P. Movva, G. Carpenter, et al., "CMOS-Compatible Synthesis of Large-Area, High-Mobility Graphene by Chemical Vapor Deposition of Acetylene on Cobalt Thin Films," Acs Nano, vol. 5, pp. 7198-7204, Sep 2011.
[40] C. Vo-Van, A. Kimouche, A. Reserbat-Plantey, O. Fruchart, P. Bayle-Guillemaud, N. Bendiab, et al., "Epitaxial graphene prepared by chemical vapor deposition on single crystal thin iridium films on sapphire," Applied Physics Letters, vol. 98, May 2 2011.
[41] C. Oshima and A. Nagashima, "Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces," Journal of Physics-Condensed Matter, vol. 9, pp. 1-20, Jan 6 1997.
[42] T. A. Land, T. Michely, R. J. Behm, J. C. Hemminger, and G. Comsa, "Stm Investigation of Single Layer Graphite Structures Produced on Pt(111) by Hydrocarbon Decomposition," Surface Science, vol. 264, pp. 261-270, Mar 15 1992.
[43] E. V. Rut'kov, A. V. Kuz'michev, and N. R. Gall, "Carbon interaction with rhodium surface: Adsorption, dissolution, segregation, growth of graphene layers," Physics of the Solid State, vol. 53, pp. 1092-1098, May 2011.
[44] S. M. Wang, Y. H. Pei, X. Wang, H. Wang, Q. N. Meng, H. W. Tian, et al., "Synthesis of graphene on a polycrystalline Co film by radio-frequency plasma-enhanced chemical vapour deposition," Journal of Physics D-Applied Physics, vol. 43, Nov 17 2010.
[45] A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina, and A. A. Zolotukhin, "Chemical vapor deposition of thin graphite films of nanometer thickness," Carbon, vol. 45, pp. 2017-2021, Sep 2007.
[46] Q. K. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S. S. Pei, "Graphene segregated on Ni surfaces and transferred to insulators," Applied Physics Letters, vol. 93, Sep 15 2008.
[47] X. S. Li, W. W. Cai, L. Colombo, and R. S. Ruoff, "Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling," Nano Letters, vol. 9, pp. 4268-4272, Dec 2009.
[48] P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, et al., "Graphene-based liquid crystal device," Nano Letters, vol. 8, pp. 1704-1708, Jun 2008.
[49] G. Eda, G. Fanchini, and M. Chhowalla, "Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material," Nature Nanotechnology, vol. 3, pp. 270-274, May 2008.
[50] H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, "Evaluation of solution-processed reduced graphene oxide films as transparent conductors," Acs Nano, vol. 2, pp. 463-470, Mar 2008.
[51] W. W. Cai, Y. W. Zhu, X. S. Li, R. D. Piner, and R. S. Ruoff, "Large area few-layer graphene/graphite films as transparent thin conducting electrodes," Applied Physics Letters, vol. 95, Sep 21 2009.
[52] A. Reina, H. B. Son, L. Y. Jiao, B. Fan, M. S. Dresselhaus, Z. F. Liu, et al., "Transferring and Identification of Single- and Few-Layer Graphene on Arbitrary Substrates," Journal of Physical Chemistry C, vol. 112, pp. 17741-17744, Nov 20 2008.
[53] V. P. Verma, S. Das, I. Lahiri, and W. Choi, "Large-area graphene on polymer film for flexible and transparent anode in field emission device," Applied Physics Letters, vol. 96, May 17 2010.
[54] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, et al., "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature, vol. 457, pp. 706-710, Feb 5 2009.
[55] J. J. Tang, f. Di, X. Xu, Y. H. Xiao, and J. F. Che, "Transparent Conductive Graphene Films," Progress in chemistry, vol. 24, 2012.
[56] S. S. Chen, W. W. Cai, R. D. Piner, J. W. Suk, Y. P. Wu, Y. J. Ren, et al., "Synthesis and Characterization of Large-Area Graphene and Graphite Films on Commercial Cu-Ni Alloy Foils," Nano Letters, vol. 11, pp. 3519-3525, Sep 2011.
[57] X. S. Li, Y. W. Zhu, W. W. Cai, M. Borysiak, B. Y. Han, D. Chen, et al., "Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes," Nano Letters, vol. 9, pp. 4359-4363, Dec 2009.
[58] J. Y. Hwang, C. C. Kuo, L. C. Chen, and K. H. Chen, "Correlating defect density with carrier mobility in large-scaled graphene films: Raman spectral signatures for the estimation of defect density," Nanotechnology, vol. 21, Nov 19 2010.
[59] S. Berciaud, S. Ryu, L. E. Brus, and T. F. Heinz, "Probing the Intrinsic Properties of Exfoliated Graphene: Raman Spectroscopy of Free-Standing Monolayers," Nano Letters, vol. 9, pp. 346-352, Jan 2009.
[60] J. Maultzsch, S. Reich, and C. Thomsen, "Double-resonant Raman scattering in graphite: Interference effects, selection rules, and phonon dispersion," Physical Review B, vol. 70, Oct 2004.
[61] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, et al., "Raman spectrum of graphene and graphene layers," Physical Review Letters, vol. 97, Nov 3 2006.
[62] A. C. Ferrari, "Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects," Solid State Communications, vol. 143, pp. 47-57, Jul 2007.
[63] 汪建民, "材料分析," 中國材料科學學會, 2005.
[64] C. Mattevi, H. Kim, and M. Chhowalla, "A review of chemical vapour deposition of graphene on copper," Journal of Materials Chemistry, vol. 21, pp. 3324-3334, 2011.
[65] X. Liu, L. Fu, N. Liu, T. Gao, Y. F. Zhang, L. Liao, et al., "Segregation Growth of Graphene on Cu-Ni Alloy for Precise Layer Control," Journal of Physical Chemistry C, vol. 115, pp. 11976-11982, Jun 23 2011.
[66] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, pp. 183-191, Mar 2007.
[67] C. S. Barrett and T. B. Massalski, Structure of metals : crystallographic methods, principles and data, 3rd rev. ed. Oxford ; New York: Pergamon, 1980.
[68] M. Hansen, R. P. Elliott, and HT Research Institute. [from old catalog], Constitution of binary alloys, 2d ed. New York: McGraw-Hill, 1958.
[69] T. Sakurai, T. Hashizume, A. Kobayashi, A. Sakai, S. Hyodo, Y. Kuk, et al., "Surface Segregation of Ni-Cu Binary-Alloys Studied by an Atom-Probe," Physical Review B, vol. 34, pp. 8379-8390, Dec 15 1986.
[70] L. Zhao, K. T. Rim, H. Zhou, R. He, T. F. Heinz, A. Pinczuk, et al., "Influence of copper crystal surface on the CVD growth of large area monolayer graphene," Solid State Communications, vol. 151, pp. 509-513, Apr 2011.
[71] D. L. Miller, M. W. Keller, J. M. Shaw, A. N. Chiaramonti, and R. R. Keller, "Epitaxial (111) films of Cu, Ni, and CuxNiy on alpha-Al2O3 (0001) for graphene growth by chemical vapor deposition," Journal of Applied Physics, vol. 112, Sep 15 2012.
[72] Z. R. Robinson, P. Tyagi, T. R. Mowll, C. A. Ventrice, and J. B. Hannon, "Argon-assisted growth of epitaxial graphene on Cu(111)," Physical Review B, vol. 86, Dec 10 2012.
[73] I. Vlassiouk, M. Regmi, P. F. Fulvio, S. Dai, P. Datskos, G. Eres, et al., "Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene," Acs Nano, vol. 5, pp. 6069-6076, Jul 2011.
[74] 黃姵珊, "氫氣的調控對化學氣相沉積法成長石墨烯之影響," 碩士論文, 2012.
[75] Q. Wang, L. Wei, M. Sullivan, S. W. Yang, and Y. Chen, "Graphene layers on Cu and Ni (111) surfaces in layer controlled graphene growth," Rsc Advances, vol. 3, pp. 3046-3053, 2013.
[76] Y. P. Wu, H. Chou, H. X. Ji, Q. Z. Wu, S. S. Chen, W. Jiang, et al., "Growth Mechanism and Controlled Synthesis of AB-Stacked Bilayer Graphene on Cu-Ni Alloy Foils," Acs Nano, vol. 6, pp. 7731-7738, Sep 2012.