簡易檢索 / 詳目顯示

研究生: 張家銓
Jang, Jia-Chuan
論文名稱: 截斷金字塔型量子點的能階與波函數計算
Computation of Energy Levels and Wavefunctions in Truncated Pyramid Quantum Dots
指導教授: 王辰樹
Wang, Chern-Shuh
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 50
中文關鍵詞: 截斷金字塔型量子點
外文關鍵詞: Truncated Pyramid Quantum Dots
相關次數: 點閱:105下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們用簡單和有效的數值方法去解三維的截斷金字塔型量子點。

    We present a simple and efficient numerical method to simulate the three
    dimensional truncated pyramid quantum dot heterostructure.

    Abstract(1) (1) Introduction(2) (2) The discretization of the Schr¨odinger equation(4) (2.1) Finite difference for the points on the left and right hypotenuses(5) (2.1.1) Left hypotenuse(5) (2.1.2) Right hypotenuse(8) (2.2) Finite difference for the points on the (upper) bottom hypotenuses(10) (2.2.1) Bottom hypotenuse(10) (2.2.2) Upper bottom hypotenuse(12) (2.3) Corner mesh point(13) (2.3.1) Upper-right corner(13) (2.3.2) Upper-left corner(15) (2.3.3) left corner(16) (2.3.4) Right corner(18) (3) 3D finite difference scheme for the truncated pyramid quantum dots(19) (3.1) Points on the western surface of the truncated pyramid(19) (3.2) Points on the bottom surface of the truncated pyramid(20) (3.3) Points on the northwestern edge of the truncated pyramid(22) (3.4) Points on the eastern edge at the bottom of the truncated pyramid(23) (3.5) The southwestern corner at the bottom of the truncated pyramid(24) (3.6) The northwestern corner at the upper bottom of the truncated pyramid(25) (3.7) Points on the northern edge at the upper bottom of the truncated pyramid   (27) (4) Numerical results(36) (5) Conclusion(39) Acknowledgments(39)

    [1] A. J. Williamson and A. Zunger. InAs quantum dots: Predicated electronic
      structure of free-standing versus GaAs-embedded structure. Phys.
      Rev. B, 1999, V.59, pp.15819-15824.
    [2] F. M. Peeters and V. A. Schweigert. Two-electron quantum disks. Phys.
      Rev. B, 1996, V.53, pp.1468-1474.
    [3] J. Shumway, L. R. C. Fonseca, J. P. Leburton, R. M. Martin, and D.
      M Ceperley. Electronic structure of self-assembled quantum dots: comparison
      between density functional theory and di®usion quantum monte
      carlo. Physica E, 2000, V.8, pp.260-268.
    [4] P. Harrison. Quantum Wells, Wires, and Dots: Theorelical and Computational
      Physics. John Wiley & Sins, 2000.
    [5] J. C. Strikwerda, Finite di®erence schemes and partial differential      equations, Wadsworth & Brooks/Cole Advanced Books & Software, 1989.
    [6] W. Wang and T.-M. Hwang and W.-W. Lin and J.-L. Liu, Numerical
      Methods for Semiconductor Heterostructure with Band Nonparabolicity.
      Journal of Computational Physics, 2003, V.190(1), pp.141-158.
    [7] T.-M. Hwang and W.-W. Lin and J.-L. Liu and W. Wang, Jacobi–
      Davidson Methods for Cubic Eigenvalue Problems. Numerical Linear
      Algebra with Applications. To appear.
    [8] M. A. Cusack, P. R. Briddon, M. Jaros, Electronic structure of
      InAs/GaAs self-assembled quantum dots. Phys. Rev. B, 1996, V.54,
      pp.2300-2303.
    [9] Tsung-Min Hwang, Wen-Wei Lin, Wei-Cheng Wang, Weichung Wang,
      A Quadratic Finite Di®erence Scheme for Pyramid Semiconductor         Hetrostructures with Uniform Mesh. Preprint submitted to Elsevier
      Science, 2002.
    [10] Tsung-Min Hwang, Wen-Wei Lin, Wei-Cheng Wang, Weichung Wang,
       Numerical Simulation of Three Dimensional Pyramid Quantum Dot.
       Journal of Computational Physics, 2003.

    下載圖示 校內:立即公開
    校外:2005-07-14公開
    QR CODE