簡易檢索 / 詳目顯示

研究生: 陳俊宇
Chen, Jiun-Yeu
論文名稱: 螺旋光子晶體之缺陷模的分析與應用
Analyses and Applications of Defect Modes in Chiral Photonic Crystals
指導教授: 陳聯文
Chen, Lien-Wen
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 117
中文關鍵詞: 光子晶體光子帶隙缺陷模光譜濾波器圓偏光反射鏡光學二極體有限元素法膽固醇液晶
外文關鍵詞: photonic crystals, photonic band gaps, defect mode, cholesteric liquid crystals, finite element method, optical diode, reflective polarizer, optical filter
相關次數: 點閱:86下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究螺旋光子晶體的光子帶隙現象,內容主要偏重在改變螺旋結構之週期性變化的規則,進而分析其所造成之光子帶隙內的缺陷模,以及相關衍生的光學應用元件。本文中所利用的數值工具包含4×4傳遞矩陣法與有限元素法,並以膽固醇液晶為例當作所要研究的螺旋光子晶體。首先以較單純的等螺旋距結構介紹初步的物理光學現象,包含色散關係、光子群速與態密度、穿透與反射頻譜、缺陷模的基本現象等等。接著再進入論文核心所要討論之螺距梯度結構的光子帶隙現象,研究的缺陷型態主要有三種,分別為:扭旋缺陷、梯度落差缺陷與螺距落差缺陷。

    在螺距梯度結構中引入扭旋缺陷會使圓偏振光在不同行進方向上出現不相同中心波長的缺陷模,利用缺陷模具單一方向的光傳輸性,可當作光學二極體使用,然而隨結構厚度增加,兩正交圓偏振光會出現不尋常的缺陷模交錯行為。在螺距梯度結構中引入梯度落差缺陷所產生的缺陷模,只存在於與螺旋結構旋向定義相同的圓偏振光上,且隨結構厚度增加而逐漸在穿透強度上衰減甚至消失,卻可在頻譜上形成更寬的反射帶,可作為超寬頻圓偏光反射鏡使用。在螺距梯度結構中引入螺距落差缺陷會產生多缺陷模,各缺陷模的中心波長關係以及自由頻譜範圍可與法布里-比洛干涉現象的結果類比,若再加上扭旋缺陷的綜合效應,所產生之缺陷模中心波長的位置變化會與扭旋角度的改變呈線性關係,此多缺陷模現象可作為具圓偏振光選擇性或非圓偏振光選擇性之光譜濾波器使用。

    The properties of photonic band gaps in chiral photonic crystals are discussed in the thesis. The research is devoted to the photonic defect modes in the chiral photonic structures with gradient pitch length and the introduction of the different kinds of defects. In addition, various optical applications with respect to the defect modes are also demonstrated. Self-organized cholesteric liquid crystals (ChLCs) with spatially varying pitch are the examples. The finite element method and the 4×4 transfer matrix method are carried out for the study of the optical propagation simulations in the ChLC films. First, the optics of the cholesteric medium with constant pitch is talked over, including dispersion relations, the group velocity, the group delays, the electromagnetic density of modes, transmission and reflection spectra, the properties of the defect modes, etc. Then, the optics of the cholesterics with spatially varying pitch is focused on the photonic defect modes created by the following defects: twist defect (phase jump), gradient jump, and pitch jump.

    The defect mode due to the introduction of a twist defect is considered in the chiral structures with spatially varying pitch. An unusual crossover behavior in reflection at the defect resonance wavelength of a single circularly polarized mode appears when the structure thickness increases over a specific value. Two different resonance wavelengths can be created by a twist defect in the identical ChLC composite film with linearly varying pitch. The behavior constitutes the operational mechanism for a passive optical diode.

    The introduction of photonic defect modes in a ChLC can be achieved by a global deformation of the helix with a chiral anti-symmetry relative to the middle of the ChLC configuration. The defect modes can be excited only when the circularly polarized incident wave has the same handedness as the ChLC. The transmittance of the defect modes is greatly reduced when the structure thickness is large far away from a critical value, and even some defect modes will be completely suppressed. A wider forbidden band for polarization-selective reflection can be obtained. Such a ChLC film can be useful for the production of the ultra-wide-band reflective polarizer.

    For normal and near-normal incidence of circularly polarized light with the same handedness as structure, the defect caused by a pitch jump in the cholesteric helix results in discrete peaks within a forbidden band in the transmission. The particular spectrum is similar to the feature of a Fabry-Perot interferometer. By introducing an additional phase jump, linear blue shifts of the defect modes in transmission spectra are correlated with an increase in the twist angle. Polarization-dependent or polarization-independent optical filters based on the special transmission properties of multiple photonic defect modes are described.

    摘要 i Abstract ii 誌謝 iv 目錄 v 表目錄 viii 圖目錄 ix 符號說明 xiv 第一章 緒論 1 1-1 前言 1 1-2 手徵介質簡介 2 1-3 文獻回顧 4 1-3-1 螺旋光子晶體:膽固醇液晶 4 1-3-2 螺旋光子晶體:鐵電液晶與薄膜螺旋雙異向性介質 10 1-3-3 光學異向性周期結構之數值方法 11 1-4 本文架構 12 第二章 基本理論與數值方法 15 2-1 液晶物理光學 15 2-1-1 液晶材料簡介 15 2-1-2 膽固醇液晶的光學特性 18 2-1-3 膽固醇液晶的螺距變化 19 2-2 4×4轉移矩陣法 22 2-2-1 Berrman’s 4×4 矩陣 22 2-2-2 螺旋光子晶體之色散關係 26 2-2-3 光穿透度與反射度計算 26 2-2-4 群速、群速延遲與態密度 28 2-2-5 介質的等效色散性質 29 2-3有限元素法 30 2-3-1 Helmholtz方程式 30 2-3-2 有限元素模型推導 31 2-3-3 頻譜有限元素模型推導 33 2-3-4 邊界條件 34 第三章 等螺距結構之螺旋光子晶體分析 43 3-1 問題描述 43 3-2 數值結果與討論 44 3-2-1 4×4矩陣法與有限元素法比較 44 3-2-2 不含缺陷的數值結果與討論 44 3-2-3 含扭旋缺陷的數值結果與討論 45 3-3 結論 46 第四章 螺距梯度結構之螺旋光子晶體分析 55 4-1 具扭旋缺陷的螺距梯度結構光子晶體 55 4-1-1 問題描述 55 4-1-2 不含缺陷的數值結果與討論 56 4-1-3 含扭旋缺陷的數值結果與討論 57 4-1-4 結論 58 4-1-5 缺陷模光學二極體 58 4-2 具梯度變化不連續之缺陷的螺距梯度結構光子晶體 59 4-2-1 問題描述 59 4-2-2 不含缺陷的數值結果與討論 60 4-2-3 含梯度變化不連續之缺陷的數值結果與討論 60 4-2-4 結論 62 4-2-5 超寬頻圓偏光反射鏡 62 4-3 具螺距變化不連續之缺陷與扭旋缺陷的螺距梯度結構光子晶體 63 4-3-1 問題描述 63 4-3-2 含螺距變化不連續之缺陷的數值結果與討論 64 4-3-3 含螺距變化不連續之缺陷與扭旋缺陷的數值結果與討論 69 4-3-4 結論 69 4-3-5 光譜濾波器 70 第五章 綜合結論與建議 102 5-1 綜合結論 102 5-2 未來研究方向與建議 104 參考文獻 105 附錄A 收斂性分析 115 自述 117

    [1] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58(20), 2059 (1987)
    [2] S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Phys. Rev. Lett. 58(23), 2486 (1987)
    [3] J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University, Princeton (1995)
    [4] E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and Acceptor Modes in Photonic Band Structure,” Phys. Rev. Lett. 67(24), 3380 (1991)
    [5] E. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. B 10(2), 283 (1993)
    [6] J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143 (1997)
    [7] D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, “All-Dielectric One-Dimensional Periodic Structures for Total Omnidirectional Reflection and Partial Spontaneous Emission Control,” J. Lightwave Technol. 17(11), 2018 (1999)
    [8] V. F. Rodríguez-Esquerre, M. Koshiba, and H. E. Hernández-Figueroa, “Finite-Element Time-Domain Analysis of 2-D Photonic Crystal Resonant Cavities,” IEEE Photon. Tech. Lett. 16(3), 816 (2004)
    [9] Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82(17), 2767 (2003)
    [10] M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77(24), 3902 (2000)
    [11] S. Noda M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, “Semiconductor Three-Dimensional and Two-Dimensional Photonic Crystals and Devices,” IEEE J. Quantum Electron. 38(7), 726 (2002)
    [12] E. Hecht, Optics, Addison-Wesley, New York (1998)
    [13] J. A. Kong, Electromagnetic Wave Theory, John Wiley & Sons, New York (1990)
    [14] I.-C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena, John Wiley & Sons, New York (1995)
    [15] P. Tran, “All-optical switching with a nonlinear chiral photonic bandgap structure,” J. Opt. Soc. Am. B 16(16), 70 (1999)
    [16] L. Gilles and P. Tran, “Optical switching in nonlinear chiral distributed Bragg reflectors with defect layers,” J. Opt. Soc. Am. B 19(4), 630 (2002)
    [17] M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett. 85(14), 2691 (2004)
    [18] T. Woliński, “Calorific Effect of the Magnetically Induced Phase Transition in Induced Chiral Nematic Systems,” Mol. Cryst. Liq. Cryst. 162B, 171 (1988)
    [19] T. R. Woliński and W. J. Bock, “Cholesteric liquid crystal sensing of high hydrostatic pressure utilizing optical fibers,” Mol. Cryst. Liq. Cryst. 199, 7 (1991).
    [20] T. R. Woliński, R. Dabrowski, W. J. Bock, A. Bogumil, and S. Klosowicz, “Liquid crystalline films for fiber optic sensing of high hydrostatic pressure,” Thin Solid Films 247, 252 (1994)
    [21] T. R. Woliński, A. Jarmolik, and W. J. Bock, “Development of Fiber Optic Liquid Crystal Sensor for Pressure Measurement,” IEEE Trans. Instrum. Meas. 48(1), 2 (1999)
    [22] K. Singh and S. Singh, “Perturbation theory for nematic liquid crystals of axially symmetric molecules: extension of calculations to high pressures,” Mol. Cryst. Liq. Cryst. 108, 133 (1984)
    [23] P. Pollmann and H. Stegemeyer, “Pressure dependence of the helical structure of cholesteric mesophases,” Chem. Phys. Lett. 20(1), 87 (1973)
    [24] S. Chandrasekhar and B. R. Ratna, “Pressure Dependence of the pitch of Cholesteryl Oleyl Carbonate,” Mol. Cryst. Liq. Cryst. 35, 109 (1976)
    [25] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, Clarendon Press, Oxford (1993)
    [26] J. Adams, W. Hass, and J. Dailey, “Cholesteric Films as Optical Filters,” J. Appl. Phys. 42(10), 4096 (1971)
    [27] P. Yeh and C. Gu, Optics of Liquid Crystal Displays, Wiley, New York (1999)
    [28] S. Kurihara, T. Kanda, T. Nagase, and T. Nonaka, “Photochemical color switching behavior of induced cholesteric liquid crystals for polarizer free liquid crystalline devices,” Appl. Phys. Lett. 73(15), 2081 (1998)
    [29] Y. Tanaka, H. Takano, and T. Kurokawa, “Circular Polarization Resonator based on Cholesteric Liquid Crystal,” Jpn. J. Appl. Phys. 43(3), 1062 (2004)
    [30] J. E. Stockley, G. D. Sharp, K.M. Johnson, “Fabry-Perot etalon with polymer cholesteric liquid-crystal mirrors,” Opt. Lett. 24(1), 55 (1999).
    [31] D. Grebe, R. Macdonald, and H.J. Eichler, “Cholesteric Liquid Crystal Mirrors for Pulsed Solid-State Lasers” Mol.Cryst.Liq.Cryst. 282, 309 (1996)
    [32] D. I. Chang, H. Y. Kim, M. Y. Jeon, H. K. Lee, D. S. Lim, K. H. Kim, I. Kim, and S. T. Kim, “Short pulse generation in the mode-locked fibre laser using cholesteric liquid crystal,” Opt. Commun. 162, 251 (1999)
    [33] Y. Semenova, Y. Panarin, G. Farrell, and S. Dovgalets, “Liquid Crystal Based Optical Switches,” Mol. Cryst. Liq. Cryst. 413, 385 (2004)
    [34] J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nature Mater. 4, 383 (2005)
    [35] J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896 (1994)
    [36] V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23(21), 1707 (1998)
    [37] T. Matsui, R. Ozaki, K. Funamoto, and M. Ozaki, “Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal,” Appl. Phys. Lett. 81(20), 3741 (2002)
    [38] T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki, and K. Yoshino, “Flexible Lasers Made from Chlesteric Liquid Crystal Polymers,” Mol. Cryst. Liq. Cryst. 413, 507 (2004)
    [39] P. V. Shibaev, V. I. Kopp, and A. Z. Genack, “Photonic Materials Based on Mixtured of Cholesteric Liquid Crystals with Polymers,” J. Phys Chem. B 107, 6961 (2003)
    [40] J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser Emission in a Dye Doped Cholesteric Polymer Network,” Adv. Mater. 14(10), 746 (2002)
    [41] F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymetric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94(1), 279 (2003)
    [42] K.-C. Shin, F. Araoka, B. Park, Y. Takanishi, K. Ishikawa, Z. Zhu, T. M. Swager, and H. Takezoe, “Advantages of Highly Ordered Polymer-Dyes for Lasing in Chiral Nematic Liquid Crystals,” Jpn. J. Appl. Phys. 43(2), 631 (2004)
    [43] A. Muñoz F., P. Palffy-Muhoray, and B. Taheri, “Ultraviolet lasing in cholesteric liquid crystals,” Opt. Lett. 26(11), 804 (2001)
    [44] H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable Mirrorless Lasing in Cholesteric Crystalline Elastomers,” Adv. Mater. 13(14), 1069 (2001)
    [45] S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystal,” Appl. Phys. Lett. 82(1), 16 (2003)
    [46] A. Y.-G. Fuh, T.-H. Lin, J.-H. Liu, F.-C. Wu, ”Lasing in chiral photonic liquid crystals and associated frequency tuning.” Opt. Express 12(9), 1857 (2004)
    [47] S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Phototunable Photonic bandgap in a chiral liquid crystal laser device,” Appl. Phys. Lett. 84(14), 2491 (2004)
    [48] T.-H. Lin, Y.-J. Chen, C.-H. Wu, A. Y.-G. Fuh, J.-H. Liu, and P.-C Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86, 161120 (2005)
    [49] C.-S. Kee, J.-E. Kim, H. Y. Park, S. J. Kim, H. C. Song, Y. S. Kwon, N. H. Myung, S. Y. Shin, and H. Lim, “Essential parameter in the formation of photonic band gaps,” Phys. Rev. E 59(4), 4695 (1999)
    [50] Y.-C. Yang, C.-S. Kee, J.-E. Kim, H.Y. Park, J.-C. Lee, and Y.-J. Jeon, “Photonic defect modes of cholesteric liquid crystals,” Phys. Rev. E 60(6), 6852 (1999).
    [51] I. R. Matías, I. D. Villar, F. J. Arregui, and R. O. Claus, “Development of an optical refractometer by analysis of one-dimensional photonic bandgap structures with defects,” Opt. Lett. 28(13), 1099 (2003)
    [52] V. I. Kopp and A. Z. Genack, “Twist Defect in Chiral Photonic Structures,” Phys. Rev. Lett. 89(3), 033901 (2002)
    [53] V. I. Kopp, Z.-O. Zhang, and A. Z. Genack, “Lasing in chiral photonic structures,” Progress in Quan. Elect. 27, 369 (2003)
    [54] J. Schmidtke, W. Stille, and H. Finkelmann, “Defect Mode Emission of a Dye Doped Cholesteric Polymer Network,” Phys. Rev. Lett. 90(8), 083902 (2003)
    [55] M. Ozaki, R. Ozaki, T. Matsui, and K. Yoshino, “Twist-Defect-Mode Lasing in Photopolymerized Cholesteric Liquid Crystal,” Jpn. J. Appl. Phys. 42 Pt.2(5A), 472 (2003)
    [56] V. I. Kopp, R. Bose, and A. Z. Genack, “Transmission through chiral twist defects in anisotropic periodic structures,” Opt. Lett. 28(5), 349 (2003)
    [57] J. Schmidtke and W. Stille, “Photonic defect modes in cholesteric liquid crystal films,” Eur. Phys. J. E 12, 553 (2003)
    [58] I. J. Hodgkinson, Q. H. Wu, L. De Silva, and M. Arnold, M. W. McCall, and A. Lakhtakia, “Supermodes of Chiral Photonic Filters with Combined Twist and Layer Defects,” Phys. Rev. Lett. 91(22), 223903 (2003)
    [59] M. H. Song, K.-C. Shin, B. Park, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Polarization characteristics of phase retardation defect mode lasing in polymeric cholesteric liquid crystals,” Sci. Tech. Adv. Mater. 5, 437 (2004)
    [60] M. H. Song, B. Park, K.-C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of Phase Retardation on Defect-Mode Lasing in Polymeric Cholesteric Liquid Crystals,” Adv. Mater. 16(9-10), 779 (2004)
    [61] T. Matsui, M. Ozaki, and K. Yoshino, “Tunable photonic defect modes in a cholesteric liquid crystal induced by optical deformation of helix,” Phys. Rev. E 69, 061715 (2004)
    [62] K. Hori, “Angular dependence of selective reflection from the chiral smectic C phase,” Mol. Cryst. Liq. Cryst. 82, 13 (1982)
    [63] M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless Lasing in a Dye-Doped Ferroelectric Liquid Crystal,” Adv. Mater. 14(4), 306 (2002)
    [64] A. Yariv, Optical Electronics in Modern Communications, Oxford University, New York (1997)
    [65] J. W. Sheton and Y. R. Shen, “Study of Phase-Matched Normal and Umklapp Third-Harmonic Generation Processes in Cholesteric Liquid Crystals,” Phys. Rev. A 5(4), 1867 (1972)
    [66] K. Kajikawa, T. Isozaki, H. Takezoe, and A. Fukuda, “Mirrorless Microcavity Spontaneously Formed in Ferroelectric Liquid Crystals,” Jpn. J. Appl. Phys. 31 Pt. 2(6A), L679 (1992)
    [67] H. Hoshi, K. Ishikawa, and H. Takezoe, “Optical second-harmonic generation enhanced by a twist defect in ferroelectric liquid crystals,” Phys. Rev. E 68, 020701 (2003)
    [68] A. Lakhtakia and R. Messier, “Sculptured thin films-I. Concepts,” Mater. Res. Innovat. 1, 145 (1997)
    [69] R. Messier and A. Lakhtakia, “Sculptured thin films-II. Experiments and applications,” Mater. Res. Innovat. 2, 217 (1999)
    [70] A. Lakhtakia and M. W. McCall, “Integrated optical polarization filtration via sculptured-thin-film technology,” J. Mod. Opt. 48(15), 2179 (2001)
    [71] I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless curcular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun. 184, 57 (2000)
    [72] A. Lakhtakia and M. W. McCall, “Sculptured thin films as ultranarrow-bandpass circular-polarization filters,” Opt. Commun. 168, 457 (1999)
    [73] A. Lakhtakia, V. C. Venugopal, and M. W. McCall, “Spectral holes in Bragg reflection from chiral sculptured thin films: circular polarization filters,” Opt. Commun. 177, 57 (2000)
    [74] A. Lakhtakia and M. W. McCall, “Polarization-dependent narrowband spectral filtering by chiral sculptured thin films,” J. Mod. Opt. 47(4), 743 (2000)
    [75] D. W. Berreman and T. J. Scheffer, “Bragg Reflection of Light from Single-Domain Cholesteric Liquid-Crystal Films,” Phys. Rev. Lett. 25(9), 577 (1970)
    [76] D. W. Berreman, “Optics in Stratified and Anisotropic Media: 4 × 4 Matrix Formulation,” J. Opt. Soc. Am. 62(4), 502 (1972)
    [77] D. W. Berreman, “Optics in smoothly varying anisotropic planar structures : Application to liquid-crystal twist cell,” J. Opt. Soc. Am. 63(11), 1374 (1973)
    [78] H. Wöhler, G. Haas, M. Fritsch, and D. A. Mlynski, “Faster 4×4 matrix method for uniaxial inhomogeneous media,” J. Opt. Soc. Am. A 5(9), 1554 (1988)
    [79] W. D. St. John, W. J. Fritz, Z. J. Lu, and D.-K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E 51(2), 1191 (1995)
    [80] Q.Hong, T.X. Wu, and S.-T. Wu, “Optical wave propagation in a cholesteric liquid crystal using the finite element method,” Liq. Cryst. 30(3), 367 (2003)
    [81] A. Suryanto, E. Van Groesen, and M. Hammer, “Finite Element Analysis of Optical Bistability in One-Dimensional Nonlinear Photonic Band Gap Structures with a Defect,” J. Nonlinear Opt. Phys. & Materials 12(2), 187 (2003)
    [82] A. Suryanto, E. Van Groesen, M. Hammer, and H. J. W. M. Hoekstra, “A finite element scheme to study the nonlinear optical response of a finite grating without and with defect,” Opt. Quant. Electron. 35, 313 (2003)
    [83] D. Y. K. Ko and J. R. Sambles, “Scattering matrix method for propagation of radiation in stratified media: attenuated total reflection studies of liquid crystals,” J. Opt. Soc. Am. A 5(11), 1863 (1988)
    [84] M. W. McCall and A. Lakhtakia, “Development and assessment of coupled wave theory of axial propagation in thin-film helicoidal bianisotropic media. Part 1: reflectances and transmittances,” J. Mod. Opt. 47(6), 973 (2000)
    [85] V. Ilyina, S. J. Cox, and T. J. Sluckin, “FDTD Method for Light Interaction with Liquid Crystals,” Mol. Cryst. Liq. Cryst. 422, 271 (2004)
    [86] H. de Vries, “Rotatory Power and Other Optical Properties of Certain Liquid Crystals,” Acta Cryst. 4, 219 (1951)
    [87] S. Kutter and M. Warner, “Reflectivity of cholesteric liquid crystals with spatially varying pitch,” Eur. Phys. J. E 12, 515 (2003)
    [88] J. Jin, The Finite Element Method in Electromagnetics, Wiley, New York (2002)
    [89] J. P. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” J. Comput. Phys. 114, 185 (1994)
    [90] S. Chandrasekhar, Liquid Crystals, Cambridge University, Cambridge (1992)
    [91] G. Solladié and R. G. Zimmermann, “Liquid Crystals: A Tool for Studies on Chirality,” Angew. Chem. int. Ed. Engl. 23(5), 348 (1984)
    [92] A. M. Donald and A. H. Windle, Liquid crystalline polymers, Cambridge University, Cambridge (1991)
    [93] R. B. Meyer, “Effects of electric and magnetic fields on the structure of cholesteric liquid crystals,” Appl. Phys. Lett. 12(9), 281 (1968)
    [94] L. M. Blinov and V. G. Chigrinov, Electro-Optic Effects in Liquid Crystal Materials, Springer, New York (1994)
    [95] D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378, 467 (1995)
    [96] D. J. Broer, G. N. Mol, J. A. M. M. van Haaren, and J. Lub, “Photo-Induced Diffusion in Polymerizing Chiral-Nematic Media,” Adv. Mater. 11(7), 573 (1999)
    [97] S. H. Chen, J. C. Mastrangelo, R. J. Jin, “Glassy Liquid Crystal Films as Broadband Polarizers and Reflectors via Spatially Modulated Photoracemization,” Adv. Mater. 11(14), 1183 (1999)
    [98] M. Mitov, A. Boudet, and P. Sopéna, “From selective to wide-band light reflection: a simple thermal diffusion in a glassy cholesteric liquid crystal,” Eur. Phys. J. B 9, 327 (1999)
    [99] A. Boudet, C. Binet, M. Mitov, C. Bourgerette, and E. Boucher, “Microstructure of variable pitch cholesteric films and its relationship with the optical properties,” Eur. Phys. J. E 2, 247 (2000)
    [100] N. O. Young and J. Kowal, “Optically active fluorite films,” Nature 183, 104 (1959)
    [101] R. M. A. Azzam, “Chiral thin solid films: method of deposition and applications,” Appl. Phys. Lett. 61(26), 3118 (1992)
    [102] K. Robbie, A. J. P. Hnatiw, M. J. Brett, R. I. MacDonald, and J. N. Mc Mullin, “Inhomogeneous thin film optical filters fabricated using glancing angle deposition,” Electron. Lett. 33(14), 1213 (1997)
    [103] J. C. Sit, D. Vick, K. Robbie, and M. J. Brett, “Thin film microstructure control using glancing angle deposition by sputtering,” J. Mater. Res. 14(4), 1197 (1999)
    [104] K. Robbie, D. J. Broer, and M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature 399, 764 (1999)
    [105] Z. Lu , L. Li, H. Vithana, Y. Jiang, and S. M. Faris, “Optical Properties of Single Layer Non-Absorptive Broadband CLC Polarizers,” Mol. Cryst. Liq. Cryst. 301, 237 (1997)
    [106] J.P. Dowling, “Parity, time-reversal and group delay for inhomogeneous dielectric slabs: Application to pulse propagation in finite, one-dimensional, photonic bandgap structures,” IEE Proc.-Optoelectron. 145(6), 420 (1998).
    [107] J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53(4), 4107 (1996)
    [108] T. Erdogan, “Fiber Grating Spectra,” J. Lightwave Technol. 15(8), 1277 (1997)
    [109] S.-Y. Zhu, N.-H. Liu, H. Zheng, and H. Chen, “Time delay of light propagation through defect modes of one-dimensional photonic band-gap structures,” Opt. Commun. 174, 139 (2000)
    [110] N.-H. Liu, S.-Y. Zhu, H. Chen, and X. Wu, “Superluminal pulse propagation through one-dimensional photonic crystals with a dispersive defect,” Phys. Rev. E 65, 046607 (2002)
    [111] A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Measurement of the Single-Photon Tunneling Time,” Phys. Rev. Lett. 71(5), 708 (1993)
    [112] V. V. Zheleznyakov, V. V. Kocharovskiĭ, and VI. V. Kocharovskiĭ, “Linear coupling of electromagnetic waves in inhomogeneous weakly-ionized media,” Sov. Phys. Usp. 26(10), 877 (1983)
    [113] C. Oldano, “Electromagnetic-wave propagation in anisotropic stratified media,” Phys. Rev. A 40(10), 6014 (1989)
    [114] J. F. Doyle, Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms, Springer, New York (1997)
    [115] O. Z. Mechdizadeh and M. Paraschivoiu, “Investigation of a two-dimensional spectral element method for Helmholtz’s equation,” J. Comput. Phys. 189, 111 (2003)
    [116] I. Babuška, F. Ihlenburg, E. T. Paik, and S. A. Sauter, “A Generalized Finite Element Method for solving the Helmhotz equation in two dimensions with minimal pollution,” Comput. Methods Appl. Mech. Engrg. 128, 325 (1995)
    [117] M. Tur, “Reflection at the Boundary Between Glass and Cholesteric Liquid Crystals,” Mol. Cryst. Liq. Cryst. 29, 345 (1975)
    [118] M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “The photonic band edge optical diode,” J. Appl. Phys. 76(4), 2023 (1994)
    [119] S. V. Belayev, M. Schadt, M. I. Barnik, J. Fünfschilling, N. V. Malimoneko, and K. Schmitt, “Large Aperture Polarized Light Source and Novel Liquid Crystal Display Operating Modes,” Jpn. J. Appl. Phys. 29 Pt. 2 (4), L634(1990)
    [120] P. van de Witte, M. Brehmer, and J. Lub, “LCD components obtained by patterning of chiral nematic polymer layers,” J. Mater. Chem. 9, 2087 (1999)
    [121] V. I. Kopp, A. Z. Genack, and Z.-O. Zhang, “Large Coherence Area Thin-Film Photonic Stop-Band Lasers,” Phys. Rev. Lett. 86(9), 1753 (2001)
    [122] I. C. Khoo and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals, World Scientific, Singapore (1993)
    [123] I. D. Villar, I. R. Matías, and F. J. Arregui, “Fiber-Optic Multiple-Wavelength Filter Based on One-Dimensional Photonic Bandgap Structures With Defects,” J. Lightwave Technol. 22(6), 1615 (2004)
    [124] I. D. Villar, I. R. Matías, F. J. Arregui, and R. O. Claus, “Analysis of one-dimensional photonic band gap structures with a liquid crystal defect towards development of fiber-optic tunable wavelength filters,” Opt. Express 11(5), 430 (2003)

    下載圖示 校內:2006-08-04公開
    校外:2007-08-04公開
    QR CODE