簡易檢索 / 詳目顯示

研究生: 楊智喬
Yang, Chih-Ciao
論文名稱: 氮化銦鎵系列太陽能電池之設計、製作與分析
Design, Fabrication and Characterization for InXGa1-XN-based Photovoltaics
指導教授: 許進恭
Sheu, Jinn-Kong
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 153
中文關鍵詞: 氮化銦鎵太陽能電池光伏超晶格極化圖形化藍寶石基板多重量子井高聚光
外文關鍵詞: MOVPE, InGaN, solar cell, photovoltaic, superlattice, polarization, patterned sapphire substrate, multiple quantum well, HCPV
相關次數: 點閱:156下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將對(0001)面藍寶石(sapphire, Al2O3)基板成長氮化銦鎵(InGaN)太陽能電池作一系列的材料分析與元件特性探討,其中包含分別利用塊材(bulk)、超晶格(superlattice)與多重量子井(multiple quantum well, MQW)等設計做為正型/未摻雜/負型接面(p-i-n junction)型式電池結構的吸收層。
    由於高銦含量與較厚的塊材結構在晶格不匹配(lattice-mismatched)的藍寶石基板上將導致大量的晶體缺陷而無法產生光伏(photovoltaic, PV)效應,為了改善磊晶品質,我們成功利用藍光波段的短週期InGaN/GaN超晶格主動層來吸收太陽光;隨後,我們在超晶格結構中的位障(barrier)層加入適當含量的鋁(AlN),利用極化(自發&壓電)現象所導致的電荷來提高InGaN太陽能電池的內建電場,如此可減少主動層中光載子被高密度缺陷所散射或復合的機率,因而提升元件效率。我們更進一步將InGaN電池結構成長於圖形化藍寶石基板(patterned sapphire substrate, PSS)之上,InGaN電池元件除了漏電流大幅降低之外,對於PV系統在戶外操作時不同太陽角度的投影損失亦較傳統平面式藍寶石基板所成長的電池元件要來得少,如此可望降低電池實際發電成本。我們亦探討InGaN太陽能電池在高聚光條件下的光電特性,吸收層為InGaN/GaN MQW的電池元件在100倍太陽光(AM1.5G頻譜)強度之下,其開路電壓與填充因子分別高達2.49 V與0.71,其光電轉換效率為2.23%。
    最後我們探討串聯電阻對InGaN電池元件的影響,在不損壞半導體磊晶品質的前提之下,我們加入適當含量與厚度的AlGaN或InGaN磊晶層,由於元件中載子的側向導電率上升因而可降低元件的串聯電阻;利用雷射剝離(laser lift-off)法,我們成功將InGaN太陽能電池從絕緣的藍寶石基板轉置到導電率佳的矽基板之上,如此光載子從主動層傳導到外部電路的傳輸距離大為縮短至僅數個微米,使得串聯電阻大幅減少49%,光電流增加72%,因而大幅提升InGaN電池元件的光電轉換效率。

    In this dissertation, the p-i-n type InGaN/sapphire-based photovoltaics (PV) were epitaxially grown on (0001) sapphire substrates by the metal-organic vapor phase epitaxy reactor. The InGaN PV devices with several absorption layer designs, including the bulk InGaN layer, the short-period InGaN/(Al)GaN superlattice and the InGaN/GaN multiple quantum well (MQW) structures, were fabricated and characterized.
    First, PV devices with an In0.25Ga0.75N/GaN superlattice absorption layer were demonstrated to have better solar response compared to those with a 200-nm-thick single In0.25Ga0.75N layer. The superlattice structure maintained better material qualities with high indium contents and thick absorption layers. Afterward, we proposed the other InGaN PV device with an Al0.14Ga0.86N/In0.21Ga0.79N superlattice structure. The polarization-induced charges at the hetero-interfaces caused enhanced built-in electric fields in the active layer, preventing photogenerated carriers from scattering or recombining by the charge-related defect states in InGaN/sapphire crystals. To improve material qualities, the patterned sapphire substrates (PSSs) were applied. The PSS-grown InGaN PV cells exhibited not only reduced leakage current but also reduced projection loss from obliquely incident sunshine. At concentrated 100-sun conditions with the AM1.5G spectral irradiance, the PSS-grown InGaN/GaN MQW PV cells exhibited high VOC (2.49 V) and FF (0.71), corresponding to a PCE of 2.23%. Finally, the series resistance effects were also studied, including additional AlGaN and InGaN insertion layers that were to enhance the lateral conductivity of photocarriers. In addition, InGaN/sapphire-based PV cells that were bonded onto conducting wafer carriers exhibited much reduced series resistance, which was attributed to the shortened carrier transit length (from hundreds to several micrometers) between active layers and external circuits, preventing photogenerated carriers from being scattered or recombined in high threading dislocation density epitaxial layers.

    摘要(Abstract in Chinese) I Abstract II 致謝(Acknowledgement) III Contents IV Table Captions VII Figure Captions VIII Chapter 1 Introduction 1 1.1 Background-Opportunities for Solar Power 1 1.2 Renewable Energy-Solar Power 3 1.3 Solar Cell (Photovoltaic) Progress 4 1.4 Group-III-Nitrides: AlGaInN-Future Photovoltaics Absorbing Full Solar Spectra 6 1.4.1 Optoelectronic Applications 6 1.4.2 Superior Photovoltaic Properties of Group-III-Nitrides 6 References in Chapter 1 8 Chapter 2 Solar Cell Physics 13 2.1 Light Absorption in Solar Cells 13 2.2 Solar Spectral Irradiance 20 2.3 p-n Junction Solar Cells 23 2.3.1 The Ideal Equivalent Circuit Model 23 2.3.2 Nonideal Effects-Parasitic Resistance 26 2.3.3 Recombination in Solar Cells 27 2.4 Multijunction Tandem Solar Cells 33 2.4.1 Thermodynamic Limits of Power Conversion Efficiency for Solar Cells 33 2.4.2 Tandem Solar Cell Concepts 33 2.4.3 High Concentrated Photovoltaics 34 References in Chapter 2 35 Chapter 3 p-i-n type InGaN/sapphire-based Photovoltaics Fabricated by Metal-Organic Vapor-Phase Epitaxy 38 3.1 Introduction-Difficulties in Achieving High Indium Content and Thick InGaN Epitaxial Layers by Present Metal-Organic Vapor Phase Epitaxy Technology 38 3.2 Photovoltaics with Bulk InGaN and GaN/InGaN Superlattice Absorption Layers 42 3.2.1 Differences between Superlattice and Multiple Quantum Well Structure Designs 42 3.2.2 Epitaxial Structure Designs of p-i-n type InGaN/sapphire-based Photovoltaics with Bulk InGaN and GaN/InGaN Superlattice Absorption Layers 43 3.2.3 Analyses of Photoluminescence Spectra and X-ray Diffraction 45 3.2.4 Dark Current-Voltage Characteristics Influenced by Surface Morphology with TD-related Pits 46 3.3 Solar Response with Reduced Leakage Current 54 References in Chapter 3 60 Chapter 4 Photovoltaics with AlGaN/InGaN Superlattice Absorption Layers 63 4.1 Introduction-Spontaneous and Piezoelectric Polarization in Gallium Nitride and its Related Compounds 63 4.2 Energy Band Diagram Simulation for Polarization Effects on InGaN-based Photovoltaics 67 4.3 Characterization of Fabricated Photovoltaics with AlGaN/InGaN Superlattice Absorption Layers 73 4.3.1 Epitaxy Design Details 73 4.3.2 Influences of Polarization Effects on Photoluminescence Properties 74 4.3.3 Solar Response with Polarization Effects 75 References in Chapter 4 87 Chapter 5 Material Quality Issues of InGaN-based Photovoltaics and Solar Response at High Concentrated-Illumination Conditions 90 5.1 Photovoltaics with GaN/InGaN Superlattice Absorption Layers Deposited on Patterned Sapphire Substrates 90 5.1.1 Introduction 90 5.1.2 Photovoltaics with AlGaN/InGaN Superlattice Absorption Layers Deposited on Patterned Sapphire Substrates with Mismatched Lattice Constants 92 5.1.3 Light Managing Properties for Practical Outdoor Terrestrial Applications 96 5.2 Photovoltaics with GaN/InGaN Multiple-Quantum-Well Absorption Layers Deposited on Patterned Sapphire Substrates 108 5.2.1 Epitaxy Designs for Photovoltaics with GaN/InGaN Multiple-Quantum-Well Absorption Layers Deposited on Patterned Sapphire Substrates 109 5.2.2 Solar Response of MQW type InGaN-based Photovoltaics Measured at 1-sun AM1.5G Solar Irradiance 110 5.2.3 Solar Response of MQW type InGaN-based Photovoltaics Measured at High Concentrated Different-Sun Conditions of AM1.5G Solar Spectral Irradiance 111 References in Chapter 5 122 Chapter 6 Series Resistance Issues over InGaN-based Photovoltaics 126 6.1 InGaN-based Photovoltaics with AlGaN and n-InGaN Insertion Layers 127 6.1.1 Band Diagram Simulation by AlGaN and InGaN Insertion Layers into InGaN-based Photovoltaics 127 6.1.2 Solar Response of InGaN-based Photovoltaics with AlGaN and n-InGaN Insertion Layers 128 6.2 Photocarrier Transit in InGaN-based Photovoltaics on Non-conducting Sapphire Substrates 137 6.2.1 InGaN Photovoltaics with Conventionally Lateral- and Vertical-type Electrodes 137 6.2.2 Mechanisms of Photocarrier Loss in InGaN/sapphire-based Photovoltaics 138 References in Chapter 6 145 Chapter 7 Conclusions and Future Work 147 7.1 Conclusions 147 7.2 Future Work 149 Publication List 150

    References in Chapter 1
    [1] I. M. Held and B. J. Soden, “Water vapor feedback and global warming,” Annu. Rev. Energy Environ., vol. 25, pp. 441–475, 2000.
    [2] http://www.who.int/mediacentre/news/releases/2005/pr38/en/index1.html
    [3] R. J. Schmitt, C. W. Osenberg, Detecting ecological impacts: concepts and applications in coastal habitats, Academic Press, San Diego, pp. 235–256, 1996.
    [4] O. Hoegh-Guldberg, “Climate change, coral bleaching and the future of the world’s coral reefs,” Mar. Freshwater Res., vol. 50, pp. 839–866, 1999.
    [5] M. I. Hoffert, K. Caldeira, G. Benford, D. R. Criswell, C. Green, H. Herzog, A. K. Jain, H. S. Kheshgi, K. S. Lackner, J. S. Lewis, H. D. Lightfoot, W. Manheimer, J. C. Mankins, M. E. Mauel, L. J. Perkins, M. E. Schlesinger, T. Volk and T. M. L. Wigley, “Advanced Technology Paths to Global Climate Stability: Energy for a Greenhouse Planet,” Science, vol. 298, no. 5595, pp. 981–987, 2002.
    [6] C. W. Allen, Astrophysical Quantities, Athlone Press, London, 1973.
    [7] E. R. Cohen and B. N. Taylor, “The 1986 adjustment of the fundamental physical constants,” Rev. Modern Phys., vol. 59, no. 4, pp. 1121–1148, 1987.
    [8] K. Lodders, “Solar System Abundances and Condensation Temperatures of the Elements,” Astrophysical J., vol. 591, no. 2, pp. 1220–1247, 2003.
    [9] D. R. Williams, Sun Fact Sheet, NASA, 2004.
    [10] W. G. Adams and R. E. Day, “The action of light on selenium,” Proc. R. Soc., vol. A 25, pp. 113–117, 1876.
    [11] D. M. Chapin, C. S. Fuller and G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power,” J. Appl. Phys. vol. 25, no. 5, pp. 676–677, 1954.
    [12] M. B. Prince, “Silicon solar energy converters,” J. Appl. Phys. vol. 26, no. 5, pp. 534–540, 1955.
    [13] L. Kazmerski, Best Research-cell Efficiencies, National Renewable Energy Laboratory (NREL), 2010.
    [14] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class highbrightness InGaN/AlGaN double-heterostructure blue-light-emitting Diodes,” Appl. Phys. Lett. vol. 64, no. 3, pp. 1687–1689, 1994.
    [15] H. Morkoç and S.N. Mohammad, “High Luminosity Gallium Nitride Blue and Blue-Green Light Emitting Diodes,” Science, vol. 267, vol. 5194, pp. 51–55, 1995.
    [16] H. Morkoç and S.N. Mohammad, Light Emitting Diodes, in Wiley Encyclopedia of Electrical Engineering and Electronics Engineering, J. Webster, ed., John Wiley and Sons, New York, 1999.
    [17] S. Nakamura, “The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes,” Science, vol.281, no. 5379, 956–961, 1998.
    [18] M. Razeghi and A. Rogalski, “Semiconductor Ultraviolet Detectors,” J. Appl. Phys. vol. 79, no. 10, pp. 7433–7473, 1996.
    [19] G.Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Morkoç, G. Smith, M. Estes, B. Goldenberg, W. Yang, and S. Krishnankutty, “Ultraviolet Photodetectors Based on GaN p-i-n and AlGaN(p)-GaN(i)-GaN(n) Structures,” Appl. Phys. Lett. vol. 71, no. 15, pp. 2154–2156, 1997.
    [20] M. A. Khan, J. N. Kuznia, J. M. Van Hove, N. Pan, and J. Carter, “Observation of a two‐dimensional electron gas in low pressure metalorganic chemical vapor deposited GaN‐AlxGa1−xN heterojunctions”, Appl. Phys. Lett., vol. 60, no. 24, pp. 3027–3029, 1992.
    [21] M. A. Khan, J. N. Kuznia, A. R. Bhattarai and D. T. Olson, “Metal semiconductor field effect transistor based on single crystal GaN,” Appl. Phys. Lett., vol. 62, no. 15, pp. 1786–1787, 1993.
    [22] J. B. Limb, H. Xing, B. Moran, L. McCarthy, S. P. DenBaars, and U. K. Mishra, “High voltage operation (>80 V) of GaN bipolar junction transistors with low leakage,” Appl. Phys. Lett., vol. 76, no. 17, pp. 2457–2459, 2000.
    [23] L. S. McCarthy, P. Kozodoy, M. J. W. Rodwell, S. P. DenBaars and U. K. Mishra, “AlGaN/GaN heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 20, no. 6, pp. 277–279, 1999.
    [24] V. Y. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, “Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap,” Phys. Status Solidi B, vol. 229, no. 3, pp. R1–R3, 2002.
    [25] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, Hai Lu, William J. Schaff, Yoshiki Saito, and Yasushi Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett., vol. 80, no. 21, pp. 3967–3969, 2002.
    [26] J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, Hai Lu, W. J. Schaff, W. K. Metzger and Sarah Kurtz, “Superior radiation resistance of InGaN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys., vol. 94, no. 10, pp. 6477–6482, 2003.
    [27] S. X. Li, K. M. Yu, J. Wu, R. E. Jones, W. Walukiewicz, J. W. Ager III, W. Shan, E. E. Haller, H. Lu and W. J. Schaff, “Fermi-level stabilization energy in group III nitrides,” Phys. Rev. B, vol. 71, no. 16, pp. 161201(R), 2005.
    [28] A. Balcioglu, R. K. Ahrenkiel, and D. J. Friedman, J. “Effects of oxygen contamination on diffusion length in p+–n GaInNAs solar cells,” J. Appl. Phys., vol. 93, no. 6, pp.3635–3642, 2003.
    [29] O. Jani, C. Honsberg, A. Asghar, D. Nicol, I. Ferguson, A. Doolittle and S. Kurtz, Characterization and analysis of InGaN photovoltaic devices, Proc. the 31st IEEE PVSC, pp. 37–42, 2005.
    [30] R. Dahal, B. Pantha, J. Li, J. Y. Lin and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Appl. Phys. Lett., vol. 94, no. 6, pp. 063505, 2009.
    [31] R. Dahal, J. Li, J. Y. Lin and H. X. Jiang, “InGaN/GaN multiple quantum well concentrator solar cells,” Appl. Phys. Lett., vol. 97, no. 7, pp. 073115, 2010.
    [32] C. C. Yang, C. H. Jang, J. K. Sheu, M. L. Lee, S. J. Tu, F. W. Huang, Y. H. Yeh and W. C. Lai, “Characteristics of InGaN-based concentrator solar cells operating under 150X solar concentration,” Optics Express, vol. 19, no. S4, pp. A695–A700, 2011.
    [33] O. Jani, I. Ferguson, C. Honsberg and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett., vol. 91, no. 13, 132117, 2007.
    [34] C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett., vol. 93, no. 14, pp. 143502, 2008.
    [35] R. H. Horng, S. T. Lin, Y. L. Tsai, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin and Y. C. Lu, ”Improved conversion efficiency of GaN/InGaN thin-film solar cells,” IEEE Electron Device Lett., vol. 30, no. 7, pp. 724–726, 2009.
    [36] R. H. Horng, M. T. Chu, H. R. Chen, W. Y. Liao, M. H. Wu, K. F. Chen and D. S. Wuu, “Improved conversion efficiency of textured InGaN solar cells with interdigitated imbedded electrodes,” IEEE Electron Device Lett., vol. 31, no. 6, pp. 585–587, 2010.
    [37] J. K. Sheu, C. C. Yang, S. J. Tu, K. H. Chang, M. L. Lee, W. C. Lai and L. C. Peng, “Demonstration of GaN-Based Solar Cells With GaN/InGaN Superlattice Absorption Layers,” IEEE Electron Device Lett., vol. 30, no. 3, pp. 225–227, 2009.
    [38] C. C. Yang, J. K. Sheu, X. W. Liang, M. S. Huang, M. L. Lee, K. H. Chang, S. J. Tu, F. W. Huang, and W. C. Lai, “Enhancement of The Conversion Efficiency of GaN-Based Photovoltaic Devices with AlGaN/InGaN Absorption Layers,” Appl. Phys. Lett., vol. 97, no. 2, pp. 021113, 2010.
    [39] C. C. Yang, J. K. Sheu, C. H. Kuo, M. S. Huang, S. J. Tu, F. W. Huang, M. L. Lee, Y. H. Yeh X. W. Liang, and W. C. Lai, “Improved power conversion efficiency of InGaN photovoltaic devices grown on patterned sapphire substrates,” IEEE Electron Device Lett., vol. 32, no. 4, pp. 536–538, 2011.
    [40] C. L. Tsai, G. C. Fan and Y. S. Lee, “Effects of InGaN/GaN superlattice absorption layers on the structural and optical properties of InGaN solar cells,” J. Vac. Sci. Technol. B, vol. 29, no. 2, pp. 021201, 2011.

    References in Chapter 2
    [1] J. Pankove, Optical Processes in Semiconductors, Dover Publications, New York, NY, pp. 34-81, 1971.
    [2] G. E. Jellison and F. A. Modine, “Optical constants for silicon at 300 and 10K determined from 1.64 to 4.73 eV by ellipsometry,” J. Appl. Phys., vol. 53, no. 5, pp. 3745-3753, 1982.
    [3] H. C. Casey, D. D. Sell, and K. W. Wecht, “Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV,” J. Appl. Phys., vol. 46, no. 1, pp. 250-257, 1975.
    [4] J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett., vol. 71, no. 18, pp. 2572-2574, 1997.
    [5] D. R. Williams, Sun Fact Sheet, NASA, 2004.
    [6] SORCE Total Solar Irradiance, LISIRD, Laboratory for Atmospheric & Space Physics, the University of Colorado, 2009.
    [7] ASTM G173-03 Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface, 2008.
    [8] S. M. Sze, Semiconductor Devices Physics and Technology 2nd Edition, John Wiley & Sons, Danvers, MA, pp. 318-328, 2002.
    [9] A. Luque and S. Hegedus (Eds), Handbook of Photovoltaic Science and Engineering, John Wiley & Sons, Chichester, West Sussex, pp. 61-112, 2003.
    [10] D. A. Neamen, Semiconductor Physics & Devices 3rd edition, McGraw-Hill, New York, NY, pp. 218-223, 2003.
    [11] J. Nelson, The Physics of Solar Cells, Imperial College Press, London, pp. 99-113, 2003.
    [12] K. Araki, M. Yamaguchi, T. Takamoto, E. Ikeda, T. Agui, H. Kurita, K. Takahashi and T. Unno, “Characteristics of GaAs-based concentrator cells,” Solar Energy Materials & Solar Cells, vol. 66, nos. 1-4, pp. 559-565, 2001.
    [13] G. S. Kinsey, P. Hebert, K. E. Barbour, D. D. Krut, H. L. Cotal and R. A. Sherif, “Concentrator multijunction solar cell characteristics under variable intensity and temperature,” Progress in Photovoltaics: Research and Applications, vol. 16, no. 6, pp. 503-508, 2008.
    [14] W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells,” J. Appl. Phys., vol. 32, no. 2, pp. 510-519, 1961.
    [15] A. Luque and G. L. Araújo, Physical Limitations to Photovoltaic Energy Conversion, Adam Hilger, Bristol, pp. 119-133, 1990.
    [16] G. L. Araújo, A. Marti, “Absolute limiting efficiencies for photovoltaic energy conversion,” Solar Energy Materials and Solar Cells, vol. 33, no. 2, pp. 213-240, 1994.
    [17] A. D. Vos, Thermodynamics of Solar Energy Conversion, Wiley-VCH, Weinheim, Germany, 2008.
    [18] J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger and S. Kurtz, “Superior radiation resistance of In1-xGaxN alloys: full-solar-spectrum photovoltaic material system,” J. Appl. Phys., vol. 94, no. 10, pp. 6477-6482, 2003.
    [19] H. Hamzaoui, A. S. Bouazzi and B. Rezig, “Theoretical possibilities of InxGa1-xN tandem PV structures,” Solar Energy Materials & Solar Cells, vol. 87, nos. 1-4, pp. 595-603, 2005.
    [20] T. Takamoto, K. Sasaki, T. Agui, H. Juso, A. Yoshida, K. Nakaido, “III-V compound solar cells,” SHARP Technical Journal, vol. 100, 2010.
    [21] R. R. King, A. Boca, W. Hong, X. Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian and N. H. Karam, Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells, Proc. 24th Eur. PVSEC, pp. 55-61, 2009.

    References in Chapter 3
    [1] O. Jani, I. Ferguson, C. Honsberg and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett., vol. 91, no. 13, pp. 132117, 2007.
    [2] A. Kuramata, K. Horino, K. Domen, K. Shinohara, and T. Tanahashi, “High‐quality GaN epitaxial layer grown by metalorganic vapor phase epitaxy on (111) MgAl2O4 substrate,” Appl. Phys. Lett., vol. 67, no. 17, pp. 2521-2523, 1995.
    [3] M. E. Lin, S. Strite, A. Agarwal, A. Salvador, G. L. Zhou, N. Teraguchi, A. Rockett and H. Morkoç, “GaN grown on hydrogen plasma cleaned 6H‐SiC substrates,” Appl. Phys. Lett., vol. 62, no. 7, pp. 702-704, 1993.
    [4] S. Nakamura, “The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes,” Science, vol. 281, no. 5379, pp. 956-961, 1998.
    [5] S. Nakamura, S. Pearton and G. Fasol, The Blue Laser Diodes, Springer, Berlin, 2000.
    [6] C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett., vol. 93, no. 14, pp. 143502, 2008.
    [7] R. H. Horng, S. T. Lin, Y. L. Tsai, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin and Y. C. Lu, ”Improved conversion efficiency of GaN/InGaN thin-film solar cells,” IEEE Electron Device Lett., vol. 30, no. 7, pp. 724-726, 2009.
    [8] R. H. Horng, M. T. Chu, H. R. Chen, W. Y. Liao, M. H. Wu, K. F. Chen and D. S. Wuu, “Improved conversion efficiency of textured InGaN solar cells with interdigitated imbedded electrodes,” IEEE Electron Device Lett., vol. 31, no. 6, pp. 585-587, 2010.

    [9] C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys., vol. 51, no. 8, pp. 4494-4500,1980.
    [10] I. H. Kim, H. S. Park, Y. J. Park, and T. Kim, “Formation of V-shaped pits in InGaN/GaN multiquantum wells and bulk InGaN films,” Appl. Phys. Lett., vol. 73, no.12, pp. 1634-1636, 1998.
    [11] M. J. Reed, N. A. El-Masry, C. A. Parker, J. C. Roberts, and S. M. Bedair, “Critical layer thickness determination of GaN/InGaN/GaN double heterostructures,” Appl. Phys. Lett., vol. 77, no. 25, pp. 4121-4123, 2000.
    [12] D. Holec, P. M. F. J. Costa, M. J. Kappers, and C. J. Humphreys, “Critical thickness calculations for InGaN/GaN,” J. Crystal Growth, vol. 303, no. 1, pp. 314-317, 2007.
    [13] A. Bensaoula and C. Boney, Investigation of III-Nitride Materials for Space-Based Solar Cells, 50, ISSO-UH/UHCL/NASA, 2005.
    [14] N. J. Ekins-Daukes, K. W. J. Barnham, J. P. Connolly, J. S. Roberts, J. C. Clark, G. Hill and M. Mazzer, “Strain-balanced GaAsP/InGaAs quantum well solar cells,” Appl. Phys. Lett., vol. 75, no. 26, pp. 4195-4197, 1999.
    [15] J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager III, E. E. Haller, Hai Lu and William J. Schaff, “Superior radiation resistance of In1–xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys., vol. 94, 10, pp. 6477-6482, 2003.
    [16] C. W. Tu, “III-N-V low-bandgap nitrides and their device applications,” J. Phys.: Condens. Matter, vol. 13, no. 32, pp. 7169-7182, 2001.
    [17] V. V. Mitin, V. A. Kochelap and M. A. Stroscio, Quantum Heterostructures: Microelectronics and Optoelectronic, Cambridge Univ. Press, Cambridge, pp. 73-104, 1999.

    [18] C. C. Yang, J. K. Sheu, S. J. Tu, M. S. Huang, K. H. Chang, M. L. Lee, L. C. Peng, and W. C. Lai, “Enhanced Photovoltaic Response of InGaN/sapphire-based Materials for Future Full-Solar-Spectrum Solar Cells,” Optics and Photonics Taiwan (OPT), IP012, Taipei, Taiwan, December 11th – 12th, 2009.
    [19] X. Zheng, R. H. Horng, D. S. Wuu, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin and Y. C. Lu, “High-quality InGaN/GaN heterojunctions and their photovoltaic effects,” Appl. Phys. Lett., vol. 93, no. 26, pp. 261108, 2008.
    [20] J. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys., vol. 106, no. 1, pp. 011101, 2009.
    [21] C. M. Tsai, J. K. Sheu, P. T. Wang, W. C. Lai, S. C. Shei, S. J. Chang, C. H. Kuo, C. W. Kuo, and Y. K. Su, “High efficiency and improved ESD characteristics of GaN-based LEDs with naturally textured surface grown by MOCVD,” IEEE Photon. Technol. Lett., vol. 18, no. 11, pp. 1213-1215, 2006.
    [22] D. K. Schroder, Semiconductor Material and Device Characterization 3rd edition, John Wiley & Sons, Hoboken, NJ, pp. 192-198, 2006.
    [23] J. K. Sheu, C. C. Yang, S. J. Tu, K. H. Chang, M. L. Lee, W. C. Lai and L. C. Peng, “Demonstration of GaN-Based Solar Cells With GaN/InGaN Superlattice Absorption Layers,” IEEE Electron Device Lett. vol., 30, no. 3, pp. 225-227, 2009.
    [24] S. Chichibu, T. Azuhata, T. Sota and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett., vol. 69, no. 27, pp. 4188-4190, 1996 and references therein.

    References in Chapter 4
    [1] P. Kung, C. J. Sun, A. Saxler, H. Ohsato and M. Razeghi, “Crystallography of epitaxial growth of wurtzite-type thin films on sapphire substrates,” J. Appl. Phys., vol. 75, no. 9, pp. 4515-4519, 1994.
    [2] C. J. Sun, P. Kung, A. Saxler, H. Ohsato, M. Razeghi and K. Haritos, “A crystallography model of (00-1) aluminum nitride epitaxial thin fim growth on (00-1) sapphire substrate,” J. Appl. Phys., vol. 75, no. 8, pp. 3964-3967, 1994.
    [3] M. Razeghi and M. Henini (Eds), Optoelectronic Devices: III-Nitrides, Elsevier, Kidlington, Oxford, pp. 10, 2004.
    [4] B. Daudin, J. L. Rouviere and M. Arlery, “Polarity determination of GaN films by ion channeling and convergent beam electron diffraction,” Appl. Phys. Lett., vol. 69, no. 17, pp. 248-2482, 1996.
    [5] F. F. Nye, Physical Properties of Crystals, Oxford Univ. Press, Oxford, 1985.
    [6] M. Posternak, A. Baldereschi, A. Catellani and R. Rseta, “Ab initio study of the spontaneous polarization of pyroelectric BeO,” Phys. Rev. Lett., vol. 64, no. 15, pp. 1777-1780, 1990.
    [7] F. Bernardini and V. Fiorentini, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B, vol. 56, no. 16, pp. R10024-R10027, 1997.
    [8] S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishira, L. A. Coldren and S. P. DenBaars, “Effective band gap inhomogenety and piezoelectric field in InGaN/GaN multiquantum well structures,” Appl. Phys. Lett., vol. 73, no. 14, pp. 2006-2008, 1998.
    [9] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, no. 6, pp. 3222-3233, 1999.
    [10] R. Cingolani, A. Botchkarev, H. Tang, H. Morkoç, G. Traetta, G. Coli, M. Lomascolo, A. Di Carlo, F. Della Sala and P. Lugli, “Spontaneous polarization and piezoelectric field in GaN/Al0.15Ga0.85N quantum wells: Impact on the optical spectra,” Phys. Rev. B, vol. 64, no. 4, pp. 2711-2715, 2000.
    [11] J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBaars, J. S. Speck and U. K. Mishra, “Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors,” Appl. Phys., vol. 77, no. 2, pp. 250-252, 2000.
    [12] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell and M. Stutzmann, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 87, no. 1, pp. 334-344, 2000.
    [13] A. D. Corso, M. Posternak, R. Resta and A. Baldereschi, “Ab initio study of piezoelectricity and spontaneous polarization in ZnO,” Phys. Rev. B, vol. 50, no. 15, pp. 10715-10721, 1994.
    [14] C. C. Yang, J. K. Sheu, X. W. Liang, M. S. Huang, M. L. Lee, K. H. Chang, S. J. Tu, F. W. Huang, and W. C. Lai, “Enhancement of The Conversion Efficiency of GaN-Based Photovoltaic Devices with AlGaN/InGaN Absorption Layers,” Appl. Phys. Lett., vol. 97, no. 2, pp. 021113, 2010.
    [15] http://www.str-soft.com/products/SiLENSe/
    [16] S. R. Lee, A. F. Wright, M. H. Crawford, G. A. Petersen, J. Han, and R. M. Biefeld, “The band-gap bowing of AlxG1−xN alloys,” Appl. Phys. Lett., vol. 74, no. 22, pp. 3344-3346, 1999.
    [17] V. Fiorentini, F. Bernardini and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures,” Appl. Phys. Lett., vol. 80, no. 7, pp. 1204-1206, 2002.
    [18] S. Nakamura, “The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes,” Science, vol. 281, no. 5379, pp. 956-961, 1998.
    [19] S. Nakamura, S. Pearton and G. Fasol, The Blue Laser Diodes, Springer, Berlin, 2000.
    [20] J. Reichman, “The current-voltage characteristics of semiconductor-electrolyte junction photovoltaic cells,” Appl. Phys. Lett., vol. 36, no. 7, pp. 574-576, 1980.

    References in Chapter 5
    [1] H. Hamzaoui, A. S. Bouazzi and B. Rezig, “Theoretical possibilities of InxGa1−xN tandem PV structures,” Solar Energy Materials and Solar Cells, vol. 87, nos. 1-4, pp. 595-603, 2005.
    [2] J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger and S. Kurtz, “Superior radiation resistance of In1-xGaxN alloys: full-solar-spectrum photovoltaic material system,” J. Appl. Phys., vol. 94, no. 10, pp. 6477-6482, 2003.
    [3] C. C. Yang, J. K. Sheu, X. W. Liang, M. S. Huang, M. L. Lee, K. H. Chang, S. J. Tu, F. W. Huang, and W. C. Lai, “Enhancement of the conversion efficiency of GaN-based photovoltaic devices with AlGaN/InGaN absorption layers,” Appl. Phys. Lett., vol. 97, no. 2, pp. 021113, 2010.
    [4] A. Usui, H. Sunakawa, A. Sakai, and A. A. Yamaguchi, “Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy,” Jpn. J. Appl. Phys., vol. 36, no.7B, pp. L899-L902, 1997.
    [5] A. Sakai, H. Sunakawa and A. Usui, “Defect structure in selectively grown GaN films with low threading dislocation density,” Appl. Phys. Lett., vol. 71, no.16, pp. 2259-2261, 1997.
    [6] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano and K. Chocho, “InGaN/GaN/AlGaN-Based Laser Diodes with Modulation-Doped Strained-Layer Superlattices,” Jpn. J. Appl. Phys., vol. 36, no.12A, pp. L1568-L1571, 1997.
    [7] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano and K. Chocho, “Continuous-wave operation of InGaN/GaN/AlGaN-based diodes grown on GaN substrates,” Appl. Phys. Lett., vol. 72, no. 16, pp. 2014-2016,1998.
    [8] A. Bensaoula and C. Boney, Investigation of III-Nitride Materials for Space-Based Solar Cells, 50, ISSO-UH/UHCL/NASA, 2005.
    [9] R. H. Horng, M. T. Chu, H. R. Chen, W. Y. Liao, M. H. Wu, K. F. Chen, and D. S. Wuu, “Improved conversion efficiency of textured InGaN solar cells with interdigitated imbedded electrodes,” IEEE Electron Device Lett., vol. 31, no. 6, pp. 585-587, 2010.
    [10] K. Hiramatsu, T. Detchprohm and I. Akasaki, “Relaxation Mechanism of Thermal Stresses in the Heterostructure of GaN Grown on Sapphire by Vapor Phase Epitaxy,” Jpn. J Appl. Phys., vol. 32, no. 4, pp. 1528-1533, 1993.
    [11] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode ,” Jpn. J. Appl. Phys., vol. 41, part 2, no. 12B, pp. L1431-L1433, 2002.
    [12] S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa and H. Kudo, “ Internal quantum efficiency of high-efficient InxGa1-xN-based near-ultraviolet light-emitting diodes,” Appl. Phys. Lett., vol. 83, no. 24, pp. 4906-4908, 2003.
    [13] W. K. Wang, D. S. Wuu, S. H. Lin, P. Han, R. H. Horng, T. C. Hsu, D. T. C. Huo, M. J. Jou, Y. H. Yu, and A. Lin, “Efficiency improvement of near-ultraviolet InGaN LEDs using patterned sapphire substrates,” IEEE Journal of Quantum Electronics, vol. 41, no. 11, pp. 1403-1409, 2005.
    [14] J. K. Sheu, M. L. Lee, and W. C. Lai, “Effect of low-temperature-grown GaN cap layer on reduced leakage current of GaN Schottky diodes,” Appl. Phys. Lett., vol. 86, no. 5, pp. 052103, 2005.
    [15] W. C. Lai, Y. Y. Yang, L. C. Peng, S. W. Yang, Y. R. Lin, and J. K. Sheu, “GaN-based light emitting diodes with embedded SiO2 pillars and air gap array structures,” Appl. Phys. Lett., vol. 97, no. 8, pp. 081103, 2010.
    [16] H. W. Huang, J. K. Huang, K. Y. Lee, C. F. Lin, and H. C. Kuo, “Light- output-power enhancement of GaN-based light-emitting diodes on an n-GaN layer using a SiO2 photonic quasi-crystal overgrowth,” IEEE Electron Device Lett., vol. 31, no. 6, pp. 573–575, 2010.
    [17] C. C. Yang, J. K. Sheu, C. H. Kuo, M. S. Huang, S. J. Tu, F. W. Huang, M. L. Lee, Y. H. Yeh, X. W. Liang and W. C. Lai, “Improved power conversion efficiency of InGaN photovoltaic devices grown on patterned sapphire substrates,” IEEE Electron Device Lett., vol. 32, no. 4, pp. 536-538, 2011.
    [18] C. M. Tsai, J. K. Sheu, W. C. Lai , M. L. Lee, S. J. Chang , C. S. Chang, T. K. Ko and C. F. Shen, “GaN-based LEDs output power improved by textured GaN/sapphire interface using in situ SiH4 treatment process during epitaxial growth,” IEEE J. Selected Topics in Quantum Electronics, vol. 15, no. 4, pp. 1275-1280,2009.
    [19] O. Jani, C. Honsberg, A. Asghar, D. Nicol, I. Ferguson, A. Doolittle and S. Kurtz, Characterization and analysis of InGaN photovoltaic devices, Proc. the 31st IEEE PVSC, pp. 37-42, 2005.
    [20] R. Dahal, B. Pantha, J. Li, J. Y. Lin and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Appl. Phys. Lett., vol. 94, no. 6, pp. 063505, 2009.
    [21] R. Dahal, J. Li, J. Y. Lin and H. X. Jiang, “InGaN/GaN multiple quantum well concentrator solar cells,” Appl. Phys. Lett., vol. 97, no. 7, pp. 073115, 2010.
    [22] J. K. Sheu, Y. S. Lu, M. L. Lee, W. C. Lai, C. H. Kuo and C. J. Tun, “Enhanced Efficiency of GaN-based Light-Emitting Diodes With Periodic Textured Ga-doped ZnO Transparent Contact Layer,” Appl. Phys. Lett., vol. 90, no. 26, pp. 263511, 2007.
    [23] M. Jeng, Y. Lee, and L. Chang, “Temperature dependences of InxGa1-xN multiple quantum well solar cells,” J. Phys. D: Appl. Phys., vol. 42, no. 10, pp. 105101, 2009.
    [24] R. R. King, A. Boca, W. Hong, X. Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian and N. H. Karam, Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells, Proc. 24th Eur. PVSEC, pp. 55–61, 2009.
    [25] S. Wojtczuk, P. Chiu, X. Zhang, D. Derkacs, C. Harris, D. Pulver and M. Timmons InGaP/GaAs/InGaAs Concentrators using Bi-Facial Epigrowth, Proc. 35th IEEE PVSC, pp. 0001259–0001264, 2010.
    [26] K. Araki, M. Yamaguchi, T. Takamoto, E. Ikeda, T. Agui, H. Kurita, K. Takahashi and T. Unno, “Characteristics of GaAs-based concentrator cells,” Solar Energy Materials & Solar Cells, vol. 66, nos. 1–4, pp. 559–565, 2001.
    [27] G. S. Kinsey, P. Hebert, K. E. Barbour, D. D. Krut, H. L. Cotal and R. A. Sherif, “Concentrator multijunction solar cell characteristics under variable intensity and temperature,” Progress in Photovoltaics: Research and Applications, vol. 16, no. 6, pp. 503–508, 2008.

    References in Chapter 6
    [1] O. Jani, I. Ferguson, C. Honsberg and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett., vol. 91, no. 13, 132117, 2007.
    [2] J. K. Sheu, C. C. Yang, S. J. Tu, K. H. Chang, M. L. Lee, W. C. Lai and L. C. Peng, “Demonstration of GaN-Based Solar Cells With GaN/InGaN Superlattice Absorption Layers,” IEEE Electron Device Lett. vol., 30, no. 3, pp. 225-227, 2009.
    [3] S. Nakamura, “The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes,” Science, vol. 281, no. 5379, pp. 956-961, 1998.
    [4] S. M. Sze, Semiconductor Devices Physics and Technology 2nd Edition, John Wiley & Sons, Danvers, MA, pp. 318-328, 2002.
    [5] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell and M. Stutzmann, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 87, no. 1, pp. 334-344, 2000.
    [6] A. Hanlon, P. M. Pattison, J. F. Kaeding, R. Sharma, P. Fini and S. Nakamura, “292 nm AlGaN Single-Quantum Well Light Emitting Diodes Grown on Transparent AlN Base,” Jpn. J. Appl. Phys., Part 2, vol. 42, no. 6B, pp. L628-L630, 2003.
    [7] M. Asif Khan, J. W. Yang, G. Simin, R. Gaska, M. S. Shur, and A. D. Bykhovski, “Piezoelectric doping in AlInGaN/GaN heterostructures,” Appl. Phys. Lett., vol. 75, no. 18, pp. 2806-2808, 1999.
    [8] S. Chichibu, T. Azuhata, T. Sota and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett., vol. 69, no. 27, pp. 4188-4190, 1996 and references therein.
    [9] W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, “Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off,” Appl. Phys. Lett., vol. 75, no. 10, pp. 1360-1362, 1999.

    下載圖示 校內:2014-09-05公開
    校外:2014-09-05公開
    QR CODE