| 研究生: |
劉興倫 Liu, Shing-Lun |
|---|---|
| 論文名稱: |
以灰階圖形誘發光介電泳進行生物粒子的連續自動分離 The Passive and Continuous Separation of Bioparticles based on Gray-Scale Light-induced Dielectrophoresis |
| 指導教授: |
張憲彰
Chang, Hsien-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 灰階 、光誘發式介電泳 、連續自動分離 |
| 外文關鍵詞: | Gray-scale, light-induced dielectrophoresis, continuous and passive separation |
| 相關次數: | 點閱:79 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用灰階式的光學圖形投影在具有光敏功能之生物晶片,進而誘發出非均勻交流電場,使生物粒子受電場極化產生介電泳力(dielectrophoresis force, DEP),以此物理現象結合微流體系統,將生物粒子自動且連續地濃縮或分離。光誘發式的介電泳(Light-induced DEP, LIDEP)晶片具有較簡易的製程步驟與即時操控功能;相較傳統的LIDEP圖形,灰階式的LIDEP(gray-scale LIDEP, GS-LIDEP)圖形所能誘發出相當廣泛的電場梯度,可有效操控散佈在微管道中的生物粒子;此外以傳統金屬電極較難以達到灰階圖形的電場作用效果。為了達到自動分離與廣泛且更有效操控生物粒子,本研究設計出多階的GS-LIDEP圖形並結合微流體系統,使粒子產生一垂直於流體方向的側向移動之介電泳力,可達到自動且連續的分離效果。在0.6 ul/min的流體速率下,以36 Vp-p、10 kHz之交流電訊號,成功地以正介電泳力引導Candida cells,該引導效率可達90%;在40 Vp-p、10 kHz之交流電下,2 um latex呈現正介電泳力而10 um呈現負介電泳力,便以此現象分離不同粒徑大小粒子,該分離效率分別可達88%與81%。在正介電泳力的作用下,由於血球的遷移率較低於E. faecium;因此,在40 Vp-p、10 kHz的交流電場下,以動態的光誘發圖形可成功分離E. faecium與血球。
This article presents a gray-scale light-induced dielectrophoresis (GS-LIDEP) method that induces the lateral displacements normal to the through-flow for continuous and passive separation of microparticles. In general, DEP force only can affect the particles within very local areas, because the electric field exponentially decays by the distance away from the electrodes. Unlike with conventional LIDEP, a broad-range electrical field gradient can easily be created by GS-pattern illumination, which induces DEP forces with two directions for continuous separation of particles to their specific sub-channels. Candia albicans populations were effectively guided to the specific outlet with the efficiency of 90 % to increase the sample concentration below the flow rate of 0.6 ul/min. 2 um and 10 um polystyrene particles can also be passively and well separated using the multi-step GS-pattern through positive and negative DEP forces, respectively, under an applied voltage of 36 Vp-p at the frequency of 10 kHz. DEP force that is capable of working on the entire area of the microchannel, and thus the mix of particles with different size can be passively and continuously separated toward the opposite directions by the both positive and negative GS-LIDEP forces. Dynamic pattern was also used to selectively concentrate bacteria from blood cells based on their different mobilities related to the moving speed under an applied voltage of 40 Vp-p, at a frequency of 10 kHz. This simple, low cost and flexible separation/manipulation platform could be very promising for many applications, such as in-field detections/pretreatments.
1.Marcy Y, Ouverney C, Bik EM, Losekann T, Ivanova N, Martin HG, Szeto E, Platt D, Hugenholtz P, Relman DA, Quake SR. Dissecting biological dark matter: Single cell genetic analysis of tm7, a rare and uncultivated microbe from the human mouth. Proc. Natl. Acad. Sci. 2007;104:11889-11894
2.Lutolf MP, Doyonnas R, Havenstrite K, Koleckar K, Blau HM. Perturbation of single hematopoietic stem cell fates in artificial niches. Integr. Biol. 2009;1:59-69
3.Jang LS, Huang PH, Lan KC. Single-cell trapping utilizing negative dielectrophoretic quadrupole and microwell electrodes. Biosens. Bioelectron. 2009;24:3637-3644
4.Markx GH, Huang Y, Zhou XF, Pethig R. Dielectrophoretic characterization and separation of microoranisms. Microbiology-(UK). 1994;140:585-591
5.Kang YJ, Li DQ. Electrokinetic motion of particles and cells in microchannels. Microfluidics and Nanofluidics. 2009;6:431-460
6.Wang XB, Yang J, Huang Y, Vykoukal J, Becker FF, Gascoyne PRC. Cell separation by dielectrophoretic field-flow-fractionation. Anal. Chem. 2000;72:832-839
7.Cheng IF, Senapati S, Cheng XG, Basuray S, Chang HC. A rapid field-use assay for mismatch number and location of hybridized dnas. Lab on a Chip. 2010;10:828-831
8.Durr M, Kentsch J, Muller T, Schnelle T, Stelzle M. Microdevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresis. Electrophoresis. 2003;24:722-731
9.Chen DF, Du HJ. A dielectrophoretic barrier-based microsystem for separation of microparticles. Microfluidics and Nanofluidics. 2007;3:603-610
10.Cheng IF, Lin CC, Lin DY, Chang H. A dielectrophoretic chip with a roughened metal surface for on-chip surface-enhanced raman scattering analysis of bacteria. Biomicrofluidics. 2010;4
11.R M-D, RA G, K A-S, MJ M. The integration of 3d carbon-electrode dielectrophoresis on a cd-like centrifugal microfluidic platform. Lab on a Chip. 2010;10:1030-1043
12.Gallo-Villanueva RC, Jesus-Perez NM, Martinez-Lopez JI, Pacheco A, Lapizco-Encinas BH. Assessment of microalgae viability employing insulator-based dielectrophoresis. Microfluidics and Nanofluidics. 2011;10:1305-1315
13.Zhu JJ, Tzeng TRJ, Hu GQ, Xuan XC. Dc dielectrophoretic focusing of particles in a serpentine microchannel. Microfluidics and Nanofluidics. 2009;7:751-756
14.Cheng IF, Froude VE, Zhu YX, Chang HC. A continuous high-throughput bioparticle sorter based on 3d traveling-wave dielectrophoresis. Lab on a Chip. 2009;9:3193-3201
15.Cheng IF, Chung CC, Chang HC. High-throughput electrokinetic bioparticle focusing based on a travelling-wave dielectrophoretic field. Microfluidics and Nanofluidics. 2011;10:649-660
16.Han KH, Han SI, Frazier AB. Lateral displacement as a function of particle size using a piecewise curved planar interdigitated electrode array. Lab on a Chip. 2009;9:2958-2964
17.Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S. Obseration of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 1986;11:288-290
18.Chiou PY, Ohta AT, Wu MC. Massively parallel manipulation of single cells and microparticles using optical images. Nature. 2005;436:370-372
19.Neale SL, Ohta AT, Hsu HY, Valley JK, Jamshidi A, Wu MC. Trap profiles of projector based optoelectronic tweezers (oet) with hela cells. Opt. Express. 2009;17:5232-5239
20.Zhu XL, Yi H, Ni ZH. Frequency-dependent behaviors of individual microscopic particles in an optically induced dielectrophoresis device. Biomicrofluidics. 2010;4
21.Neale SL, Mazilu M, Wilson JIB, Dholakia K, Krauss TF. The resolution of optical traps created by light induced dielectrophoresis (lidep). Opt. Express. 2007;15:12619-12626
22.Lu YS, Huang YP, Yeh JA, Lee C, Chang YH. Controllability of non-contact cell manipulation by image dielectrophoresis (idep). Opt. Quantum Electron. 2005;37:1385-1395
23.Hwang H, Choi YJ, Choi W, Kim SH, Jang J, Park JK. Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system. Electrophoresis. 2008;29:1203-1212
24.Valley JK, Jamshidi A, Ohta AT, Hsu HY, Wu MC. Operational regimes and physics present in optoelectronic tweezers. J. Microelectromech. Syst. 2008;17:342-350
25.Lin Y-H, Chang C-M, Lee G-B. Manipulation of single DNA molecules by using optically projected images. Opt. Express. 2009;17:15318-15329
26.Hoeb M, Radler JO, Klein S, Stutzmann M, Brandt MS. Light-induced dielectrophoretic manipulation of DNA. Biophys. J. 2007;93:1032-1038
27.Lin WY, Lin YH, Lee GB. Separation of micro-particles utilizing spatial difference of optically induced dielectrophoretic forces. Microfluidics and Nanofluidics. 2010;8:217-229
28.Ohta AT, Chiou PY, Han TH, Liao JC, Bhardwaj U, McCabe ERB, Yu FQ, Sun R, Wu MC. Dynamic cell and microparticle control via optoelectronic tweezers. J. Microelectromech. Syst. 2007;16:491-499
29.Lin Y, Lee G. Optically induced flow cytometry for continuous microparticle counting and sorting. Biosensors and Bioelectronics. 2008;24:572-578
30.Choi W, Nam SW, Hwang H, Park S, Park JK. Programmable manipulation of motile cells in optoelectronic tweezers using a grayscale image. Appl. Phys. Lett. 2008;93
31.SM Y, TM Y, HP H, MY K, L H, CH L. Dynamic manipulation and patterning of microparticles and cells by using tiopc-based optoelectronic dielectrophoresis. Opt. Lett. 2010;35:1959-1961
32.Hwang H, Park JK. Rapid and selective concentration of microparticles in an optoelectrofluidic platform. Lab on a Chip. 2009;9:199-206
33.Lee S, Park HJ, Yoon JS, Kang KH. Optoelectrofluidic field separation based on light-intensity gradients. Biomicrofluidics. 2010;4:034102
34.Chang H-C, Yeo LY. Electrokinetically driven microfluidics and nanofluidics. Cambridge. 2010
35.Grier DG. A revolution in optical manipulation. Nature. 2003;424:810-816
36.Pohl HA. Some effects of nonuniform fields on dielectrics. Applied Physics. 1958;29:1182-1189
37.Schwarz R, Wang F, Reissner M. Fermi level dependence of the ambipolar diffusion length in amorphous silicon thin film transistors Appl. Phys. Lett. 1993;63:1083-1085
38.Basuray S, Chang H-C. Induced dipoles and dielectrophoresis of nanocolloids in electrolytes. Physical Review E. 2007;75:060501
39.Gagnon Z, Gordon J, Sengupta S, Chang HC. Bovine red blood cell starvation age discrimination through a glutaraldehyde-amplified dielectrophoretic approach with buffer selection and membrane cross-linking. Electrophoresis. 2008;29:2272-2279
40.Gordon JE, Gagnon Z, Chang HC. Dielectrophoretic discrimination of bovine red blood cell starvation age by buffer selection and membrane cross-linking. Biomicrofluidics. 2007;1
41.太陽能電池材料,楊德仁,五南圖書,2009
校內:2012-08-31公開