| 研究生: |
蕭詠友 Xiao, Yong-Yo |
|---|---|
| 論文名稱: |
磨削加工參數對製程係數之影響 The Effect of Grinding Process Parameters on Process Coefficients |
| 指導教授: |
王俊志
Wang, J-J Junz |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 砂輪接觸剛性 、製程係數 、工件磨耗係數 |
| 外文關鍵詞: | cutting stiffness, contact stiffness, process coefficients |
| 相關次數: | 點閱:113 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文就平面研磨加工方式進行實驗與理論分析,探討磨削加工參數對研磨系統中製程係數之影響。磨削系統之製程係數主要包括有砂輪接觸剛性、工件磨耗係數與砂輪磨耗係數,此三者改變會影響著研磨製程之穩定性與加工品質優劣。而一般砂輪磨耗係數對系統穩定性影響不若其它製程係數大,因此在本文之探討重點放在砂輪接觸剛性與工件磨耗係數。
將捲積磨削力模式預測之垂直方向平均磨削力,配合實驗所量測之實際研磨深度,可以得到製程係數隨切削深度增加而產生之變化趨勢。而透過選擇加工參數,以光刀研磨方式及改變切深進給與工件速度等實驗方法,來觀察分析研磨系統中輸入之加工參數造成製程係數之影響。實驗結果切削深度越大,則工件磨耗係數會越小,而砂輪接觸剛性則越大。前者乃由於尺寸效應影響,後者則是因為單位面積上之接觸磨粒隨切深增加所造成。但在改變工件速度實驗結果看來,工件速度越快會使工件磨耗係數增加而砂輪接觸剛性下降,可能是由於工件速度變快造成實際磨削深度減小,才讓工件磨耗係數與砂輪接觸剛性有此變化趨勢。
This thesis investigates the effect of grinding process parameters on process coefficients in grinding system by using surface grinding machine. The main process coefficients include contact stiffness, cutting stiffness, and wheel wear resistance. All these parameters effect on the stability of grinding and the quality of products. Because of the less effect of wheel wear resistance on grinding stability, we focus on contact stiffness and cutting stiffness in this thesis.
From the combination of convolution force and real cutting depth, the tendencies of process coefficients vary with cutting depth. To observe the effect of process parameters on process coefficients, the experiments are taken in spark-out grinding and grind with varied cutting depth and workpiece speed. The results of experiments show that the larger in cutting depth, the smaller in cutting stiffness, and the bigger in contact stiffness. The fore is caused by size effect and the latter is made because of the increase of the contact grits on unit area with increasing cutting depth. From the results of changing workpiece speed experiments, the increase of workpiece speed will make cutting stiffness increase but contact stiffness decrease in contrary. The reason is the real cutting depth decreasing with workpiece speed increasing, then it make cutting stiffness and contact stiffness vary in those tendencies.
參考文獻
[1] H. S. Kim, K. S. Jeong, D. G. Lee, “Design and Manufacture of a Three-axis Ultra-precision CNC Grinding Machine,” Journal of Materials Processing Technology, Vol. 71, pp. 258-266, 1997.
[2] M. C. Shaw, “Principles of Abrasive Processing,” Oxford New York, 1996.
[3] W. Lortz, “A Model of the Cutting Mechanism in Grinding,”Wear, Vol. 53, pp. 115-128, 1979
[4] J. L. Metzger, “Superabrasive Grinding,” Butterworths, 1986.
[5] K. V. Kumar, M. Cozminca, Y. Tanaka, and M. C. Shaw, “A New Method of Studying the Performance of Grinding Wheels,” ASME Journal of Engineering for Industry, Vol. 102, pp. 80-84, 1980.
[6] S. Malkin, “Grinding Technology:Theory and Application of Machining with Abrasives,” John Wiley & Sons.
[7] J. J. Wang, S. Y. Liang, and W. J. Book, “Convolution Analysis of Milling Force Pulsation,” ASME Journal of Engineering for Industry, Vol. 116, pp. 17-25, 1994.
[8] 蘇耀慶,磨削加工捲積力學模式之分析與實驗,國立成功大學機械工程研究所,八十五年碩士論文.
[9] 馬其駿,包含剪切與犁切機制之磨削力模式,國立成功大學機械工程研究所,九十年碩士論文.
[10] 林賜民,鉻鉬合金鋼精密輪磨加工特性研究,國立成功大學機械工程研究所,八十三年碩士論文
[11] R. Snoeys and D. Brown, “Dominating Parameters in Grinding Wheel and Workpiece Regenerative Chatter,” the 10th International Machine Tool Design and Research Conference, pp. 325-348, 1969.
[12] J. C. Ramos, J. Vinolas, F. J. Nieto, “A Simplified Methodology to Determine the Cutting Stiffness and the Contact Stiffness in the Plunge Grinding Process,” International Journal of Machine Tools & Manufacture, Vol. 41, pp. 33-49, 2001.
[13] B. Zhang, J. Wang, F. Yang, Z. Zhu, “The Effect of Machine Stiffness on Grinding of Silicon Nitride,” International Journal of Machine Tools & Manufacture, Vol. 39, pp. 1263-1283, 1999.
[14] K. A. Hekman and S. Y. Liang, “Feed Rate Optimization and depth of Cut Control for Productivity and Part Parallelism in Grinding,” Mechatronics, Vol. 9, pp. 447-462, 1999.
[15] S. Li, J. Liang, L. Li, S. Cao, W. Shu, H. Peng, “Study of The Ground Workpiece Surface Topography in High-Speed Precision Grinding Using A Scanning Tunneling Microscopy,” Journal of Materials Processing Technology, Vol. 139, pp. 263-266, 2003.
[16] Y.S. Xu, J. Hu, B. Lin, Z.C. Li, “Studies on the Surface Quality of the Unsteady-State Grinding technique,” Journal of Materials Processing Technology, Vol. 129, pp. 364-368, 2002.
[17] H. Tsuwa, “An Investigation of Grinding Wheel Cutting Edges,” ASME Journal of Engineering for Industry, pp. 371, NOV., 1964.
[18] H. K. Tönshoff, J. Peters, I. Inasaki, T. Paul, “Modelling and Simulation of Grinding Processes,” Annals of CIRP, Vol. 281, pp. 213-218, 1979.
[19] M. Younis, M. M. Sadek, and T. EI-Wardani, “A New Approach to Development of a Grinding Force Model,” ASME Journal of Engineering for Industry, Vol.109, pp. 306-313, 1987.
[20] S. Malkin, “Selection of Operation Parameter in Surface Grinding of Steels,” ASME Journal of Engineering for Industry, pp. 56-62, 1976.
[21] 中國砂輪公司編,精密研磨加工技術概說,中國砂輪公司,1990.
[22] 黃舉錐,尖端研磨技術,全華科技, 1988.