簡易檢索 / 詳目顯示

研究生: 鄭博文
Cheang, Pok-Man
論文名稱: 探討人芽囊原蟲感染對大腸直腸癌致癌作用的影響
Investigating the Influence of Blastocystis hominis Infection on Carcinogenesis in Colorectal Cancer
指導教授: 林威辰
Lin, Wei-Chen
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 58
中文關鍵詞: 人芽囊原蟲具核梭桿菌大腸直腸癌
外文關鍵詞: Blastocystis hominis, Fusobacterium nucleatum, colorectal cancer
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人芽囊原蟲 (Blastocystis hominis) 是一種常見於全世界哺乳動物和家禽腸胃道中的微小寄生蟲。 患病率在已開發國家為 (5-20%),而在發展中國家由於衛生條件較差和與動物密切接觸的關係人芽囊原蟲的患病率約為 60%。多項研究結果顯示,人芽囊原蟲感染,與炎症性腸病 (inflammatory bowel disease, IBD) 與腸道功能性障礙 (irritable bowel syndrome, IBS) 等腸胃道疾病有關。其他研究表明,人芽囊原蟲感染會促進大腸直腸癌 (colorectal cancer, CRC) 的發展和腸道菌群失調,這種情況下的腸道菌群中如具核梭桿菌 (Fusobacteria nucleatum)的數量改變,透過其蛋白質可促進大腸直腸癌細胞的生長,而直接影響癌症的發展。由於在其他研究中也觀察到:人芽囊原蟲感染在大腸直腸癌患者中的患病率較高。因此,本研究希望通過探討人芽囊原蟲對大腸直腸癌腫瘤發展中的微生物群的影響,從而去釐清人芽囊原蟲和大腸直腸癌之間的關聯性和致病機制。根據研究結果,我們發現人芽囊原蟲在大腸直腸癌患者中檢測陽性率明顯高於全球平均感染率,並且人芽囊原蟲和具核梭桿菌均可促進大腸直腸癌細胞的增殖。更進一步我們發現:人芽囊原蟲感染後會透過 Wnt/β-catenin 信號傳遞路徑,激活下游相關調控因子。此外,我們透過共培養系統發現人芽囊原蟲可促進具核梭桿菌的增殖。透過本篇研究結果顯示,人芽囊原蟲感染與大腸直腸癌發展具有高度關聯性,因此可藉由治療人芽囊原蟲感染作為提高大腸直腸癌治療效果的新策略。

    Blastocystis hominis (B. hominis) is a common microscopic parasite in the gastrointestinal tract of mammalian and domestic animals worldwide. The prevalence of Blastocystis hominis is about 60% in developing countries, due to poor hygiene and close contact with animals, compared to developed countries (5-20%). Several studies revealed that B. hominis infection is associated with gastrointestinal diseases such as IBD and IBS, causing diarrhea, abdominal pain, or other symptoms. Another study shows that B. hominis contributed to colorectal cancer (CRC) and gut microbiota dysbiosis, the bacteria directly causing affection in cancer metabolism by producing metabolites such as F. nucleatum to promote the growth of CRC cells since they have also observed a higher prevalence of B. hominis infection in CRC patients, in this study, to investigate the causality and underlying mechanisms between B. hominis and CRC by understanding that B. hominis affects on the microbiota in tumor progression. This study reveals the prevalence of B. hominis and F. nucleatum in CRC patients by PCR technique. The prevalence of B. hominis in CRC patients is significantly higher than in healthy people. In-vitro investigation showed that both B. hominis and F. nucleatum triggered the higher proliferation of CRC cells. In addition, the co-incubation system revealed that B. hominis triggered the proliferation of F. nucleatum. B. hominis induced the activation of the Wnt/β-catenin signaling pathway, confirmed by real-time PCR and immunofluorescence staining. These results suggest that the high association of B. hominis with CRC and identifying B. hominis infection treatment can serve as a novel strategy to improve the efficacy of CRC therapy if positive to B. hominis.

    中文摘要 i ABSTRACT ii CHAPTER 1 1 INTRODUCTION 1 1.1 Colorectal cancer (CRC) 1 1.2 The risk factor of colorectal cancer 1 1.3 The association between F. nucleatum and CRC 4 1.4 Blastocystis hominis 5 1.5 The association between B. hominis and colorectal cancer 6 1.6 The relationship between CRC and Wnt signaling pathway 7 1.7 Rationale 8 CHAPTER 2 9 MATERIALS AND METHODS 9 2.1 Blastocystis hominis 9 2.2 Blastocystis hominis thawing and storage 9 2.3 Bacterial strains and cell lines 9 2.3.1 Fusobacterium nucleatum 10 2.3.2 HCT116 cell 11 2.3.3 Caco-2 cell 12 2.4 DNA extraction of CRC patients’ fecal specimen 13 2.5 PCR gel electrophoresis 13 2.6 RNA Extraction of CRC cells 14 2.7 cDNA Synthesis 14 2.8 Cell proliferation assay 15 2.8.1 Seeding 15 2.8.2 Bacteria preparation 15 2.8.3 CRC cell co-incubation with F. nucleatum 15 2.9 Axenization of B. hominis and isolation of solubilized antigen 15 2.10 CRC cells treatment with B. hominis solubilized antigen 16 2.11 B. hominis and F. nucleatum co-incubation experiment 16 2.12 Extraction of B. hominis-derived exosomes 17 2.13 Co-incubation of B. hominis-derived exosomes and CRC cells 17 2.14 Real-time polymerase chain reaction (RT-PCR) 18 2.15 Compartmental proteins of B. hominis extraction 18 2.16 Immunofluorescence 20 CHAPTER 3 Results 21 3.1 The prevalence of B. hominis and F. nucleatum in Taiwan colorectal cancer patients 21 3.2 B. hominis solubilized antigen and F. nucleatum promotes the proliferation of HCT116/Caco-2 cells 21 3.3 The interaction between B. hominis and F. nucleatum 22 3.4 B. hominis-derived Exosomoes do not affect the proliferation of CRC cells 23 3.5 B. hominis-derived Cytoplasmic protein promotes the proliferation of CRC cells 23 3.6 B. hominis-dervied 3kDa below cytoplasmic protein may trigger the proliferation of CRC cells 24 3.7 B. hominis did not modulate the gene expression level of collagen in human CRC cells 24 3.8 B. hominis increases the Wnt/β-catenin related gene expression level in CRC cells 25 Discussion 27 TABLES 33 Table 1 Oligonucleotide primers used in this study 33 Table 2. Prevalence of B.hominis and F. nucleatum infection with colorectal cancer patients 34 Table 3. Clinical characteristics of colorectal cancer patients 35 FIGURES 36 Figure 1: Detection of Blastocystis hominis and Fusobacterium nucleatum in CRC patient fecal samples. 36 Figure 2: Alignment of Blastocystis hominis and Fusobacterium nucleatum DNA sequence compared with positive samples. 37 Figure 3: Interactions of B. hominis with F. nucleatum. 38 Figure 4: Solubilized antigen of B. hominis facilitates the proliferation of colorectal cancer cells HCT116 and Caco-2 cell.. 39 Figure 5: F. nuleatum triggers proliferation of human colorectal cancer cells HCT116 and Caco-2 cells. 40 Figure 6: Combined treatment induces a stronger effect on proliferation of human colorectal cancer cells HCT116 and Caco-2 cells.. 41 Figure 7: B. hominis-derived EVs do not take part in the proliferation of HCT116 and Caco-2 cells. 42 Figure 8: Compartmental protein of B. hominis treatment to HCT116 cells. 43 Figure 9: Compartmental protein of B. hominis treatment to Caco-2 cell. 44 Figure 10: B. hominis-dervied 3kDa proteins treatment to HCT116 cell. 45 Figure 11: B. hominis triggered the proliferation of Caco-2 cells might not associated with the modulation of the extracellular matrix. 46 Figure 12: B. hominis triggered the proliferation of Caco-2 cells might have associated with Wnt/β-Catenin Signaling. 47 CHAPTER 5 References 48

    1. Kuo, C.N., et al., Cancers in Taiwan: Practical insight from epidemiology, treatments, biomarkers, and cost. J Formos Med Assoc, 2020. 119(12): p. 1731-1741.
    2. Siegel, R.L., et al., Colorectal cancer statistics, 2023. CA Cancer J Clin, 2023. 73(3): p. 233-254.
    3. Elabd, N.S., et al., Long Non-Coding RNAs ASB16-AS1 and AFAP1-AS1: Diagnostic, Prognostic Impact and Survival Analysis in Colorectal Cancer. Appl Clin Genet, 2022. 15: p. 97-109.
    4. Crosara Teixeira, M., et al., Primary prevention of colorectal cancer: myth or reality? World J Gastroenterol, 2014. 20(41): p. 15060-9.
    5. Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p. 394-424.
    6. Win, A.K., et al., Risk prediction models for colorectal cancer: a review. Cancer Epidemiol Biomarkers Prev, 2012. 21(3): p. 398-410.
    7. Sehgal, R., et al., Lynch syndrome: an updated review. Genes (Basel), 2014. 5(3): p. 497-507.
    8. Kolligs, F.T., Diagnostics and Epidemiology of Colorectal Cancer. Visc Med, 2016. 32(3): p. 158-64.
    9. Rawla, P., T. Sunkara, and A. Barsouk, Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Prz Gastroenterol, 2019. 14(2): p. 89-103.
    10. Valle, L., et al., Genetic predisposition to colorectal cancer: syndromes, genes, classification of genetic variants and implications for precision medicine. J Pathol, 2019. 247(5): p. 574-588.
    11. Samadder, N.J., K. Jasperson, and R.W. Burt, Hereditary and common familial colorectal cancer: evidence for colorectal screening. Dig Dis Sci, 2015. 60(3): p. 734-47.
    12. Rasool, S., et al., Genetic unraveling of colorectal cancer. Tumour Biol, 2014. 35(6): p. 5067-82.
    13. Driver, J.A., et al., Development of a risk score for colorectal cancer in men. Am J Med, 2007. 120(3): p. 257-63.
    14. Lin, T.C., et al., Risk of colorectal cancer in patients with alcoholism: A nationwide, population-based nested case-control study. PLoS One, 2020. 15(5): p. e0232740.
    15. Kumagai, Y., et al., Dietary patterns and colorectal cancer risk in Japan: the Ohsaki Cohort Study. Cancer Causes Control, 2014. 25(6): p. 727-36.
    16. Hossain, M.S., et al., Colorectal Cancer: A Review of Carcinogenesis, Global Epidemiology, Current Challenges, Risk Factors, Preventive and Treatment Strategies. Cancers (Basel), 2022. 14(7).
    17. Shin, A., et al., Site-specific risk factors for colorectal cancer in a Korean population. PLoS One, 2011. 6(8): p. e23196.
    18. Aykan, N.F., Red Meat and Colorectal Cancer. Oncol Rev, 2015. 9(1): p. 288.
    19. Sun, C., et al., Risk factors for the development of metachronous bone metastasis in colorectal cancer patients after curative resection. Int J Surg, 2015. 21: p. 145-9.
    20. Wong, S.H. and J. Yu, Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol, 2019. 16(11): p. 690-704.
    21. Ternes, D., et al., Microbiome in Colorectal Cancer: How to Get from Meta-omics to Mechanism?: (Trends in Microbiology 28, 401-423; 2020). Trends Microbiol, 2020. 28(8): p. 698.
    22. Inamura, K., Colorectal Cancers: An Update on Their Molecular Pathology. Cancers, 2018. 10(1).
    23. Gopalakrishnan, V., et al., The Influence of the Gut Microbiome on Cancer, Immunity, and Cancer Immunotherapy. Cancer Cell, 2018. 33(4): p. 570-580.
    24. Grenham, S., et al., Brain-gut-microbe communication in health and disease. Front Physiol, 2011. 2: p. 94.
    25. Raffaello, A., et al., Calcium at the Center of Cell Signaling: Interplay between Endoplasmic Reticulum, Mitochondria, and Lysosomes. Trends in Biochemical Sciences, 2016. 41(12): p. 1035-1049.
    26. Oral Microbial Communities GENOMIC INQUIRY AND INTERSPECIES COMMUNICATION PREFACE. Oral Microbial Communities: Genomic Inquiry and Interspecies Communication, 2011: p. Xv-Xvi.
    27. Nie, S., et al., Fusobacterium nucleatum subspecies identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol, 2015. 53(4): p. 1399-402.
    28. Han, Y.W., et al., Uncultivated Bacteria as Etiologic Agents of Intra-Amniotic Inflammation Leading to Preterm Birth. Journal of Clinical Microbiology, 2009. 47(1): p. 38-47.
    29. Han, Y.P.W., et al., Term Stillbirth Caused by Oral Fusobacterium nucleatum. Obstetrics and Gynecology, 2010. 115(2): p. 442-445.
    30. Abed, J., et al., Fap2 Mediates Fusobacterium nucleatum Colorectal Adenocarcinoma Enrichment by Binding to Tumor-Expressed Gal-GalNAc. Cell Host Microbe, 2016. 20(2): p. 215-25.
    31. Kostic, A.D., et al., Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res, 2012. 22(2): p. 292-8.
    32. Casasanta, M.A., et al., Fusobacterium nucleatum host-cell binding and invasion induces IL-8 and CXCL1 secretion that drives colorectal cancer cell migration. Science Signaling, 2020. 13(641).
    33. Kostic, A.D., et al., Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe, 2013. 14(2): p. 207-15.
    34. Park, C.H., C.S. Eun, and D.S. Han, Intestinal microbiota, chronic inflammation, and colorectal cancer. Intestinal Research, 2018. 16(3): p. 338-345.
    35. Tan, K.S., Blastocystis in humans and animals: new insights using modern methodologies. Vet Parasitol, 2004. 126(1-2): p. 121-44.
    36. Stenzel, D.J. and P.F. Boreham, Blastocystis hominis revisited. Clin Microbiol Rev, 1996. 9(4): p. 563-84.
    37. Jimenez, P.A., J.E. Jaimes, and J.D. Ramirez, A summary of Blastocystis subtypes in North and South America. Parasit Vectors, 2019. 12(1): p. 376.
    38. Wawrzyniak, I., et al., Blastocystis, an unrecognized parasite: an overview of pathogenesis and diagnosis. Ther Adv Infect Dis, 2013. 1(5): p. 167-78.
    39. Bilinski, J., et al., Eosinophilic gastroenteritis and graft-versus-host disease induced by transmission of Norovirus with fecal microbiota transplant. Transpl Infect Dis, 2021. 23(1): p. e13386.
    40. Pegelow, K., et al., Parasitological and nutritional situation of school children in the Sukaraja district, West Java, Indonesia. Southeast Asian J Trop Med Public Health, 1997. 28(1): p. 173-90.
    41. Su, F.H., et al., Blastocystis hominis infection in long-term care facilities in Taiwan: prevalence and associated clinical factors. Parasitol Res, 2009. 105(4): p. 1007-13.
    42. Lax, A.J., Opinion: Bacterial toxins and cancer--a case to answer? Nat Rev Microbiol, 2005. 3(4): p. 343-9.
    43. Kumarasamy, V., et al., Association of Blastocystis hominis with colorectal cancer: A systematic review of in vitro and in vivo evidences. World J Gastrointest Oncol, 2022. 14(3): p. 734-745.
    44. Poirier, P., et al., New Insights into Blastocystis spp.: A Potential Link with Irritable Bowel Syndrome. Plos Pathogens, 2012. 8(3).
    45. Crudo, F., et al., In vitro interactions of Alternaria mycotoxins, an emerging class of food contaminants, with the gut microbiota: a bidirectional relationship. Arch Toxicol, 2021. 95(7): p. 2533-2549.
    46. Esteghamati, A., et al., Prevalence of Intestinal Parasitic Infection in Cancer, Organ Transplant and Primary Immunodeficiency Patients in Tehran, Iran. Asian Pac J Cancer Prev, 2019. 20(2): p. 495-501.
    47. Yason, J.A., et al., Interactions between a pathogenic Blastocystis subtype and gut microbiota: in vitro and in vivo studies. Microbiome, 2019. 7(1): p. 30.
    48. Tito, R.Y., et al., Population-level analysis of Blastocystis subtype prevalence and variation in the human gut microbiota. Gut, 2019. 68(7): p. 1180-1189.
    49. Wu, Z.N., H. Mirza, and K.S.W. Tan, Intra-Subtype Variation in Enteroadhesion Accounts for Differences in Epithelial Barrier Disruption and Is Associated with Metronidazole Resistance in Blastocystis Subtype-7. Plos Neglected Tropical Diseases, 2014. 8(5).
    50. Ajjampur, S.S., et al., Ex Vivo and In Vivo Mice Models to Study Blastocystis spp. Adhesion, Colonization and Pathology: Closer to Proving Koch's Postulates. PLoS One, 2016. 11(8): p. e0160458.
    51. Stensvold, C.R., et al., Blastocystis: unravelling potential risk factors and clinical significance of a common but neglected parasite. Epidemiol Infect, 2009. 137(11): p. 1655-63.
    52. Nusse, R. and H.E. Varmus, Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell, 1982. 31(1): p. 99-109.
    53. Clevers, H. and R. Nusse, Wnt/beta-catenin signaling and disease. Cell, 2012. 149(6): p. 1192-205.
    54. McCartney, B.M. and I.S. Nathke, Cell regulation by the Apc protein. Apc as master regulator of epithelia. Current Opinion in Cell Biology, 2008. 20(2): p. 186-193.
    55. Niehrs, C., The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol, 2012. 13(12): p. 767-79.
    56. Perugorria, M.J., et al., Wnt-beta-catenin signalling in liver development, health and disease. Nat Rev Gastroenterol Hepatol, 2019. 16(2): p. 121-136.
    57. Skronska-Wasek, W., et al., Reduced Frizzled Receptor 4 Expression Prevents WNT/beta-Catenin-driven Alveolar Lung Repair in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med, 2017. 196(2): p. 172-185.
    58. Barker, N., Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol, 2014. 15(1): p. 19-33.
    59. Cancer Genome Atlas, N., Comprehensive molecular characterization of human colon and rectal cancer. Nature, 2012. 487(7407): p. 330-7.
    60. Markowitz, S.D. and M.M. Bertagnolli, Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med, 2009. 361(25): p. 2449-60.
    61. Peluso, E.A., et al., Genetic Manipulation and Virulence Assessment of Fusobacterium nucleatum. Curr Protoc Microbiol, 2020. 57(1): p. e104.
    62. Chung, E., I. Oh, and K.Y. Lee, Characterization of sphere-forming HCT116 clones by whole RNA sequencing. Ann Surg Treat Res, 2016. 90(4): p. 183-93.
    63. Chandramathi, S., K. Suresh, and U.R. Kuppusamy, Solubilized antigen of Blastocystis hominis facilitates the growth of human colorectal cancer cells, HCT116. Parasitol Res, 2010. 106(4): p. 941-5.
    64. Bae, E.S., et al., Anti-Proliferative Activity of Nodosin, a Diterpenoid from Isodon serra, via Regulation of Wnt/beta-Catenin Signaling Pathways in Human Colon Cancer Cells. Biomol Ther (Seoul), 2020. 28(5): p. 465-472.
    65. Sulzyc-Bielicka, V., et al., Colorectal cancer and Blastocystis sp. infection. Parasit Vectors, 2021. 14(1): p. 200.
    66. Twu, O., et al., Trichomonas vaginalis exosomes deliver cargo to host cells and mediate hostratioparasite interactions. PLoS Pathog, 2013. 9(7): p. e1003482.
    67. Olmos-Ortiz, L.M., et al., Trichomonas vaginalis exosome-like vesicles modify the cytokine profile and reduce inflammation in parasite-infected mice. Parasite Immunol, 2017. 39(6).
    68. Rabelink, T.J., et al., Heparanase: roles in cell survival, extracellular matrix remodelling and the development of kidney disease. Nat Rev Nephrol, 2017. 13(4): p. 201-212.
    69. Levental, K.R., et al., Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell, 2009. 139(5): p. 891-906.
    70. Pickup, M.W., J.K. Mouw, and V.M. Weaver, The extracellular matrix modulates the hallmarks of cancer. EMBO Rep, 2014. 15(12): p. 1243-53.
    71. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74.
    72. Crotti, S., et al., Extracellular Matrix and Colorectal Cancer: How Surrounding Microenvironment Affects Cancer Cell Behavior? J Cell Physiol, 2017. 232(5): p. 967-975.
    73. Naba, A., et al., The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol Cell Proteomics, 2012. 11(4): p. M111 014647.
    74. Naba, A., et al., Extracellular matrix signatures of human primary metastatic colon cancers and their metastases to liver. BMC Cancer, 2014. 14: p. 518.
    75. Zou, X., et al., Up-regulation of type I collagen during tumorigenesis of colorectal cancer revealed by quantitative proteomic analysis. J Proteomics, 2013. 94: p. 473-85.
    76. Disoma, C., et al., Wnt/beta-catenin signaling in colorectal cancer: Is therapeutic targeting even possible? Biochimie, 2022. 195: p. 39-53.
    77. van de Wetering, M., et al., The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell, 2002. 111(2): p. 241-50.
    78. Yuan, H., et al., RHBDF1 regulates APC-mediated stimulation of the epithelial-to-mesenchymal transition and proliferation of colorectal cancer cells in part via the Wnt/beta-catenin signalling pathway. Exp Cell Res, 2018. 368(1): p. 24-36.
    79. Shen, J., Z. Yu, and N. Li, The E3 ubiquitin ligase RNF146 promotes colorectal cancer by activating the Wnt/beta-catenin pathway via ubiquitination of Axin1. Biochem Biophys Res Commun, 2018. 503(2): p. 991-997.
    80. Chan, K.H., et al., Effects of symptomatic and asymptomatic isolates of Blastocystis hominis on colorectal cancer cell line, HCT116. Parasitol Res, 2012. 110(6): p. 2475-80.
    81. Dogruman-Al, F., et al., Blastocystis subtypes in irritable bowel syndrome and inflammatory bowel disease in Ankara, Turkey. Mem Inst Oswaldo Cruz, 2009. 104(5): p. 724-7.
    82. Poirier, P., et al., New insights into Blastocystis spp.: a potential link with irritable bowel syndrome. PLoS Pathog, 2012. 8(3): p. e1002545.
    83. Nourrisson, C., et al., Blastocystis is associated with decrease of fecal microbiota protective bacteria: comparative analysis between patients with irritable bowel syndrome and control subjects. PLoS One, 2014. 9(11): p. e111868.
    84. Himbert, C., et al., Differences in the gut microbiome by physical activity and BMI among colorectal cancer patients. Am J Cancer Res, 2022. 12(10): p. 4789-4801.
    85. Himbert, C., et al., Associations of Individual and Combined Physical Activity and Body Mass Index Groups with Proinflammatory Biomarkers among Colorectal Cancer Patients. Cancer Epidemiol Biomarkers Prev, 2022. 31(12): p. 2148-2156.
    86. Parkin, D.M., The global health burden of infection-associated cancers in the year 2002. Int J Cancer, 2006. 118(12): p. 3030-44.
    87. Padukone, S., J. Mandal, and S.C. Parija, Severe Blastocystis subtype 3 infection in a patient with colorectal cancer. Trop Parasitol, 2017. 7(2): p. 122-124.
    88. Ferlay, J., et al., Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer, 2015. 136(5): p. E359-86.
    89. Billy, V., et al., Blastocystis Colonization Alters the Gut Microbiome and, in Some Cases, Promotes Faster Recovery From Induced Colitis. Front Microbiol, 2021. 12: p. 641483.
    90. Flanagan, L., et al., Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur J Clin Microbiol Infect Dis, 2014. 33(8): p. 1381-90.
    91. Zackular, J.P., et al., The human gut microbiome as a screening tool for colorectal cancer. Cancer Prev Res (Phila), 2014. 7(11): p. 1112-21.
    92. Zeller, G., et al., Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol Syst Biol, 2014. 10(11): p. 766.
    93. Castellarin, M., et al., Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res, 2012. 22(2): p. 299-306.
    94. Viljoen, K.S., et al., Quantitative profiling of colorectal cancer-associated bacteria reveals associations between fusobacterium spp., enterotoxigenic Bacteroides fragilis (ETBF) and clinicopathological features of colorectal cancer. PLoS One, 2015. 10(3): p. e0119462.
    95. McCoy, A.N., et al., Fusobacterium is associated with colorectal adenomas. PLoS One, 2013. 8(1): p. e53653.
    96. Nakatsu, G., et al., Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat Commun, 2015. 6: p. 8727.
    97. Hofseth, L.J., et al., Early-onset colorectal cancer: initial clues and current views. Nat Rev Gastroenterol Hepatol, 2020. 17(6): p. 352-364.
    98. Jalanka, J., et al., Effects of bowel cleansing on the intestinal microbiota. Gut, 2015. 64(10): p. 1562-8.
    99. Embley, T.M. and W. Martin, Eukaryotic evolution, changes and challenges. Nature, 2006. 440(7084): p. 623-30.
    100. Stechmann, A., et al., Organelles in Blastocystis that blur the distinction between mitochondria and hydrogenosomes. Curr Biol, 2008. 18(8): p. 580-5.
    101. Furdui, C. and S.W. Ragsdale, The role of pyruvate ferredoxin oxidoreductase in pyruvate synthesis during autotrophic growth by the Wood-Ljungdahl pathway. J Biol Chem, 2000. 275(37): p. 28494-9.
    102. Hug, L.A., A. Stechmann, and A.J. Roger, Phylogenetic distributions and histories of proteins involved in anaerobic pyruvate metabolism in eukaryotes. Mol Biol Evol, 2010. 27(2): p. 311-24.
    103. Walderich, B., et al., Cytopathic effects of Blastocystis hominis on Chinese hamster ovary (CHO) and adeno carcinoma HT29 cell cultures. Tropical Medicine & International Health, 1998. 3(5): p. 385-390.
    104. Long, H.Y., et al., Blastocystis hominis modulates immune responses and cytokine release in colonic epithelial cells. Parasitol Res, 2001. 87(12): p. 1029-30.
    105. Rubinstein, M.R., et al., Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe, 2013. 14(2): p. 195-206.
    106. Nourrisson, C., et al., On Blastocystis secreted cysteine proteases: a legumain-activated cathepsin B increases paracellular permeability of intestinal Caco-2 cell monolayers. Parasitology, 2016. 143(13): p. 1713-1722.
    107. Karamati, S.A., et al., Association of Blastocystis ST6 with higher protease activity among symptomatic subjects. Bmc Microbiology, 2021. 21(1).
    108. Mort, J.S., M.S. Leduc, and A.D. Recklies, Characterization of a latent cysteine proteinase from ascitic fluid as a high molecular weight form of cathepsin B. Biochim Biophys Acta, 1983. 755(3): p. 369-75.
    109. Recklies, A.D. and J.S. Mort, Characterization of a cysteine proteinase secreted by mouse mammary gland. Cancer Res, 1985. 45(5): p. 2302-7.
    110. Schatoff, E.M., B.I. Leach, and L.E. Dow, Wnt Signaling and Colorectal Cancer. Curr Colorectal Cancer Rep, 2017. 13(2): p. 101-110.

    無法下載圖示 校內:2028-08-21公開
    校外:2028-08-21公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE