| 研究生: |
郭一帆 Kuo, Yi-Fan |
|---|---|
| 論文名稱: |
銅粉粒徑大小與分佈對半碳化銅/酚醛樹脂基半金屬磨擦材料機械及磨潤性質的影響 Effects of Particle Size and Distribution of Copper Powder on Mechanical and Tribological Properties of Semi-carbonized Copper/Phenolic Resin-based Semi-metallic Friction Material |
| 指導教授: |
朱建平
Ju, Chien-Ping 陳瑾惠 Chern Lin, Jiin-Huey |
| 共同指導教授: |
李國榮
Lee, Kuo-Jung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | 磨擦材料 、半金屬 、磨耗 |
| 外文關鍵詞: | Friction materials, Semi-metal, Wear |
| 相關次數: | 點閱:93 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研究使用半碳化製作銅/酚醛樹脂基半金屬磨擦材料,並探討銅粉的粒徑大小及分佈對半金屬磨擦材料機械及磨潤性質的影響。研究中分別使用萬能試驗機、洛式硬度機、CNS2586磨耗試驗機、掃描式電子顯微鏡來分析半金屬磨擦材料機械、磨潤性質與顯微結構。
由實驗結果顯示,隨著銅粉粒徑增大試片的尺寸降低、韌性升高、硬度降低、磨耗量降低;然而銅粉粒徑為中等尺寸時,試片的抗壓強度與磨擦係數較高。
當銅粉粒徑分佈為0.5~53 μm(CuM/S)及0.5~420 μm (CuM/S/L)時,試片具有較高的硬度及抗壓強度,當粒徑分佈為45~420 μm(CuM/L、CuM4/L1)時,試片具有較低的硬度及抗壓強度,但韌性較高。其中粒徑分佈為0.5~420 μm(CuM/S/L)時,試片具較高磨擦係數與最低的磨耗量。
顯微結構方面,當銅粉粒徑為細小尺寸時,銅顆粒會集結成巨大且多孔的燒結體,碳附著於燒結體的空隙上;當銅粉粒徑為中等尺寸時,銅顆粒緊密地黏合,碳會均勻的鑲嵌在銅顆粒的間隙形成網狀結構;當銅粉粒徑為粗大尺寸時,銅顆粒未能均勻地燒結在一起,碳填塞於銅顆粒間。
The purpose of this research is to investigate the effects of the particle size and distribution of copper powder on mechanical and tribological properties of semi-carbonized copper/phenolic resin-based semi-metallic friction materials. The mechanical properties, tribological properties, and microstructure of semi-metallic friction materials are measured by universal tester, Rockwell hardness tester, wear tester with CNS-2586, and scanning electron microscopy.
The results indicate that compressive strength of specimens increase with the particle size, while the size of the specimen, the hardness, and the wear loss decrease. In addition, when the particle size of specimen is about 50 μm (CuM), the specimen has higher compressive strength and coefficient of friction than the specimens with other particle sizes.
When particle size distribution of specimens are between 0.5~53 μm (CuM/S) and 0.5~420 μm (CuM/S/L), the specimens have higher hardness, compressive strength, and toughness than specimens with other particle size distribution. However, when particle size distribution of specimens are between 45~420 μm (CuM/L and CuM4/L1), the specimens have lower toughness than specimens with other particle size distribution. Moreover, when particle size distribution is from 0.5~420 μm (CuM/S/L), the specimen has highest friction coefficient and lowest wear loss of all specimens.
When the particle size of copper powder is about 1 μm (CuS), the copper particles integrate in the huge one and sinter to porous particles and carbon adheres in the interface and pore of the huge and porous particles. When the particle size of copper powder is about 50 μm (CuM), the copper particles bond tightly, carbon inlays homogeneously in the interval of the copper. Moreover, when the particle size of copper powder is about 200 μm (CuL), copper particles spread heterogeneously and carbon fills the interval of the copper.
ASME B46.1. Surface texture, surface roughness, waviness and lay
ASTM D695-96. Standard test method for compressive properties of rigid plastics, 1996
Adem Kurt, Mustafa Boz,Wear behavior of organic asbestos based and bronze based powder metal brake linings, Material & Design 26(2005)717-721
A.J.Smith, H.V.Atkinson, S.V.Hainsworth and A.C.F.Cocks, Use of a micromanipulator at high temperature in an environmental scanning electron microscope to apply force during the sintering of copper particles, Scripta Materialia 55(2006) 707-710
Bear E., Moet A., Aglan H., High performance polymers :structure, properties, composites, fibers, Oxford University Press, New York, p14-p16, 1991
Bijwe J., Composites as friction materials: Recent developments in non-asbestos fiber reinforced friction materials - a review, Polymer Composites 18:378-396, 1997
Bijwe J., Rattan R., Fahim M., Abrasive wear performance of carbon fabric reinforced polyetherimide composites: Influence of content and orientation of fabric, Tribology International 40:844-854, 2007
Bono C.M., Levine R.G., Rao J.P. Behrens F.F., Nonarticular proximal tibia fractures: Treatment options and decision making, American Academy of Orthopaedic Surgeons 9:176-186, 2001
Burchell T.D., Carbon materials for advanced technologies, Pergamon, New York, p434, 1999
Burris D.L. and Sawyer W.G., A low friction and ultra low wear rate PEEK/PTFE composite, Wear 261:410-418, 2006
Chang L., Zhang Z., Ye L., Friedrich K., Tribological properties of high temperature resistant polymer composites with fine particles, Tribology International 40:1170-1178, 2007
Cho M.H., Ju J., Kim S.J., Jang H., Tribological properties of solid lubricants (graphite, Sb2S3, MoS2) for automotive brake friction materials, Wear 260:855-860, 2006
Cho M.H., Kim S.J., Basch R.H., Fash J.W., Jang H., Tribological study of gray cast iron with automotive brake linings: The effect of rotor microstructure, Tribology International 36:537-545, 2003
Chi-Yuan Huang,Wen-Wei Mo,Ming-Lin Roan, Studies on the influence of double-layer electroless metal deposition on the electromagnetic interference shielding effectiveness of carbon fiber / ABS composites, Surface and Coating Techology 184(2004) 163-169
CNS 2114, Z8003. Method of Rockwell hardness test
CNS 2472, G3038. Gray iron castings
CNS 2586, D2002. Brake linings for automobiles
CNS 7473, Z8022. Method of Rockwell superficial hardness test
CNS 8813, D3122. Method of test for brake shoe assembly of motorcycles
CNS 8814, D2129. Brake shoe assembly for motorcycles
Dorinson A. and Ludema K. C., Mechanics and chemistry in lubrication, Elsevier Science Publishing, New York, p553, 1985
F.E.Kennedy, A.C.Balbahadur, D.S.Lashmore, The friction and wear of Cu-based silicon carbide particulate metal matrix composites for brake applications, Wear 203-204(1997)715-721
Feng-hua Su, Zhao-Zhu Zhang, Wei-min Liu, Mechanical and tribological properties of carbon fabric composites filled with several nano-particulates, Wear 260(2006)861-868
Gewen Yi, Fengyuan Yan, Mechanical and tribological properties of phenolic resin-based friction composites filled with several inorganic fillers, Wear 262(2007)121-129
Han S., Kim W.G., Yoon H.G., Moon T.J., Curing reaction of biphenyl epoxy resin with different phenolic functional hardeners, Journal of Polymer Science A: Polymer Chemistry 36:773-783, 1998
Hayashi N., Matsui A., Takahashi S., Effect of surface topography on transferred film formation in plastic and metal sliding system, Wear 225-229:329-338, 1999
Hirotaka Kato, Masahiro Takama, Yoshiro Iwai, Kazuo Washida, Yoshinori Sasaki, Wear and mechanical properties of sintered copper-tin composites containing graphite or molybdenum disulfide, Wear 255(2003)573-578
Hutchings I.M., Tribology: Friction and wear of engineering materials, CRC, Boca Raton, 1992
H. Jang , K. Ko, S.J. Kim, R.H. Basch , J.W. Fash , The effect of metal fibers on the friction performance of automotive brake friction materials,Wear 256 (2004) 406–414
H.Jang , J.S.Lee, J.W.Fash, Compositional effects of the brake friction material on creep groan phenomena, Wear 251(2001)1477-1483
I.Mutlu, C.Oner, F.Findik, Boric acid effect in phenolic composites on tribological properties in brake linings, Materials & Design 28(2007) 480-487
I.Mutlu, O.Eldogan, F.Findik, Tribological properties of some phenolic composites suggested for automotive brakes, Tribology International 39(2006)317-325
Jacko M.G., Rhee S.K., Brake linings and clutch facings. In Grayson M., editor. Encyclopedia of composite materials and components, Wiley: 144-154, 1983
Jang H., Ko K., Kim S.J., Basch R.H., Fash J.W., The effect of metal fibers on the friction performance of automotive brake friction materials, Wear 256:406-414, 2004
J.B.Singh, W.Cai, P.Bellon, Dry sliding of Cu-15%Ni-8wt%Sn bronze:Wear behavior and microstructures, Wear 263(2007)830-841
J.Y.Wu, Y.C.Zhou, J.Y.Wang., Tribological behavior of Ti2SnC particulate reinforced copper copper matrix composites, Materials Science Engineering A: 422(2006)266-271
Kim S.J. and Jang H., Friction and wear of friction materials containing two different phenolic resins reinforced with aramid pulp, Tribology International 33:477-484, 2000
Kim S.J., Cho M.H., Lim D.-S., Jang H., Synergistic effects of aramid pulp and potassium titanate whiskers in the automotive friction material, Wear 251:1484-1491, 2001
Kim S.J., Cho M.H., Cho K.H., Jang H., Complementary effects of solid lubricants in the automotive brake lining, Tribology International 40:15-20, 2007
Kishore, Sampathkumaran P., Seetharamu S., Thomas P., Janardhana M., A study on the effect of the type and content of filler in epoxy-glass composite system on the friction and slide wear characteristics, Wear 259:634-641, 2005
Kurt A. and Boz M., Wear behavior of organic asbestos based and bronze based powder metal brake linings, Materials and Design 26:717-721, 2005
K.M.Shorowordi,A.S.M.A.Haseeb,J.P.Celis, Velocity effects on
the wear,friction and tribochemistry of aluminum MMC sliding against phenolic brake pad,Wear256(2004)1176-1181
K.W. Hee, P. Filip, Performance of ceramic enhanced phenolic matrix brake lining materials for automotive brake linings, Wear 259 (2005) 1088–1096
Lee H.G., Hwang H.Y., Lee D.G., Effect of wear debris on the tribological characteristics of carbon fiber epoxy composites, Wear 261:453-459, 2006
Li Chang, Zhong Zhang, Lin Ye ,Klaus Friedrich, Tribological properties of high temperature resistant polymer composites with fine particles, Tribology International 40(2007)1170-1178
Louis B.Newman,F, Friction Materials Recent Advances
Mandal D., Dutta B.K., Panigrahi S.C., Wear and friction of stir cast aluminum-base short steel fiber reinforced composites, Wear 257:654-664, 2004
Mutlu I., Oner C., Findik F., Boric acid effect in phenolic composites on tribological properties in brake linings, Materials and Design 28:480-487, 2007
Mumin Sahin, Cem S.Cetinarslan, H.Erol Akata, Effect of surface roughness on friction coefficients during upsetting processes for different materials, Materials and Design 28(2007) 633-640
Min Hyung Cho, Jeong Ju, Seong Jin Kim, Ho Jang, Tribological properties of solid lubricants(graphite,Sb2S3,MoS2) for automotive brake friction materials, Wear 260(2006)855-860
Min Hyung Cho, Seong Jin Kim, Daehwan Kim, Ho Jang, Effects of ingredients on tribological characteristics of a brake lining: an experimental case study,Wear 258 (2005) 1682–1687
M.H.Cho, S.J.Kim, R.H.Basch, J.W.Fash, H.Jang, Tribological study of gray cast iron with automotive brake linings:The effect of rotor microstructure, Tribology International 36(2003)537-545
Ozturk B., Arslan F., Ozturk S., Hot wear properties of ceramic and basalt fiber reinforced hybrid friction materials, Tribology International 40:37-48, 2007
Peter Filip, Zdenek Weiss, David Rafaja, On friction layer formation in polymer matrix composites materials for brake applications, Wear 252(2002)189-198
P.K.Deshpande,R.Y.Lin, Wear resistance of WC particle reinforced copper matrix composites and the effect of porosity, Materials Science and Engineering A 418(2006)137-145
R.J.Talib, A.Muchtar, C.H.Azhari., Microstructural characteristics on the surface and subsurface of semimetallic automotive friction materials during braking process, Journal of Materials Processing Technology 140:694-699,2003
Shorowordi K.M., Haseeb A.S.M.A., Celis J.P., Velocity effects on the wear, friction and tribochemistry of aluminum MMC sliding against phenolic brake pad, Wear 256:1176-1181, 2004
Shorowordi K.M., Haseeb A.S.M.A., Celis J.P., Tribo-surface characteristics of Al-B4C and Al-SiC composites worn under different contact pressures, Wear 261:634-641, 2006
Stachowiak G.W., Wear:materials, mechanisms, and practice, Wiley, Chichester, p12, 2005
Seong Jin Kim, Ho Jang,Friction and wear of friction materials containing two different phenolic resins reinforced with aramid pulp,Tribology International 33 (2000) 477–484
Shaoyang Zhang,Fuping Wang,Comparison of friction and wear performances of brake material dry sliding against two aluminum matrix composites reinforced with differnt SiC particles,Journal of Materials Processing Technology 182(2007)122-127
Shinn-Shyong Tzeng,Fa-Yen Chang,Electrical resistivity of electroless nickel coated carbon fibers,Thin Solid Films 388 (2001) 143-149
Shinn-Shyong Tzeng,Fa-Yen Chang,EMI shielding effectiveness of metal-coated carbon fiber-reinforced ABS composites,Materials science and Engineering A302(2001)258-267
S.J. Kim, M.H. Cho, D.-S. Lim, H. Jang, Synergistic effects of aramid pulp and potassium titanate whiskers in the automotive friction material, Wear 251 (2001) 1484–1491
V.A.Bely,A.I.Sviridenok,M.I.Petrokovets,V.G.Savkin, Friction and wear in polymer-based materials
Vlastimil Matejka, Yafei Lu, Tanli Fan, Gabriela Kratosova, Jana Leskova, Effect of silicon carbide in semi-metallic brake materials on friction performance and friction layer formation, Wear 265(2008)1121-1128
Wu J.Y., Zhou Y.C., Wang J.Y., Tribological behavior of Ti2SnC particulate reinforced copper matrix composites, Materials Science and Engineering A 422:266-271, 2006
eovolak and bismaleimide for resin-transfer molding, J Appl Polym Sci(83):1651-1657, 2002
Xiang Xiong , Jie Chen, Pingping Yao, Shipeng Li, Baiyun Huang, Friction and wear behaviors and mechanisms of Fe and SiO2 in Cu-based P/M friction materials, Wear 262 (2007) 1182–1186
Xu Jincheng, Yu Hui, Xia long, Li Xiaolong, Yang Hua, Effect of some factors on the tribological properties of the short carbon fiber-reinforced copper composite, Materials and Design 25(2004) 489-493
Yi G. and Yan F., Mechanical and tribological properties of phenolic resin-based friction composites filled with several inorganic fillers, Wear 262:121-129, 2007
Yuji H. and Takahisa K., Effects of Cu powder, BaSO4 and cashew dust on the wear and friction characteristics of automotive brake pads, Tribology Transactions 39(2):346-353, 1996
Yiping Tang, Hezhou Liu, Haijun Zhao,Lei Liu, Yating Wu, Friction and wear properties matrix composites reforced with short carbon fibers, Materials & Design 29(2008)257-261
Y.S. Zhang, Z. Han, K. Wang, K. Lu, Friction and wear behaviors of nanocrystalline surface layer of pure copper, Wear 260 (2006) 942–948
Zum Gahr K.H., Microstructure and wear of materials, Elsevier, New York, 1987.
Limpert, 高維山譯,煞車系統設計及安全性,科技圖書,台北市,民國93年
馬振基,高分子複合材料,國立編譯館,台北市,民國95年
李育德,高分子導論,黎明書店,新竹,民國76年
何淑靜,銅/酚醛樹脂基半金屬磨擦材料磨潤性質研究,國立成功大學材料科學及工程學系,台南市,民國93年
岑尚仁,石墨、鋁及製程參數對燒結銅基磨擦材料磨潤性質影響之研究,國立成功大學材料科學及工程學系,台南市,民國92年
鄭勝仁,碳化溫度及銅纖維含量對銅/酚醛樹脂半金屬基磨擦材料機械及磨潤性質的影響,國立成功大學材料科學及工程學系,台南市,民國96年
簡兆廷,碳化時間及銅纖維含量對銅/酚醛樹脂半金屬基磨擦材料機械及磨潤性質的影響,國立成功大學材料科學及工程學系,台南市,民國97年
許明發,郭文雄,熱塑性複合材料,黎明書店,新竹,民國93年
行政院勞工委員會勞工安全衛生研究所,煞車來令業勞工石棉暴露防治研究,台北,民國85年
陽春欽,磨潤學原理與應用,科技圖書股份有限公司,台北市,民國75年
曲在綱,黃月初,粉末冶金摩擦材料
周森,複合材料-奈米‧生物科技,全威圖書有限公司
顧宜,複合材料,新文京開發出版股份有限公司,台北縣,民國91年
經濟部技術處,中華民國粉末冶金協會,新竹縣,民國83年
校內:2020-12-31公開