| 研究生: |
呂姿瑩 Lyu, Zih-Ying |
|---|---|
| 論文名稱: |
多項易腐性商品之最佳訂購政策應用於餐廳產業 Optimal Ordering Policies for Perishable Items in Restaurant Industry |
| 指導教授: |
王泰裕
Wang, Tai-Yue |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 餐廳存貨管理 、訂購政策 、腐敗性存貨 、兩階段隨機規劃 |
| 外文關鍵詞: | restaurant management, ordering policy, deteriorating items, two-stage stochastic |
| 相關次數: | 點閱:123 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在企業中存貨管理被視為重要的一環,好的存貨管理可以為企業帶來利潤增加,且當公司販賣兩種以上的商品時,在存貨方面可能會有許多不同的商品需要同時進行管理,過多的存貨可能造成企業資金流動有風險,過少的存貨可能有無法及時滿足顧客的需求,多項物項的存貨管理比單一物項的存貨管理來的複雜許多,例如一般雜貨店、零售商或餐廳都是賣超過單項以上的商品。由於商品具有腐敗特性時考量的因素較為複雜,所以不同的產業都需要各自考量自身產品的屬性,進而建立一套屬於自己的存貨管理-訂購政策。
本研究以餐廳存貨管理主要研究主題,餐廳中會使用的食材屬於易腐性商品,利用隨機規劃中的兩階段法建立本研究之模型,透過建立情境樹的方式描述需求不確定性,將餐廳的需求分割為多個情境,以該時程規劃內最小化總存貨成本及各項食材最佳訂購策略為目標,本研究利用線性規劃求解。研究結果顯示,當食材之最佳訂購量為零表示不採取購買,原因是採購該食材所需的訂購成本、存貨持有成本及腐敗成本的加總是高於缺貨成本,故不採取購買,才可得在該時程規劃內總存貨成本最小,並由敏感度分析後發現單位購買成本、單位腐敗成本及單位缺貨成本造成模型變動較大,可建議決策者在做決策時,以購買成本較為穩定的食材為主要選購來源,在研究中也考量各項食材的腐敗成本,所以會加以考量食材的腐敗情況而決定訂購數量,並且針對不同餐廳導向所估算不同的缺貨成本。
Inventory management is one of important functions in enterprises. A well-operated inventory management system can increase profits tremendously by reducing total inventory cost. Most enterprises manage two or more products lines simultaneously. Overstocking can lead to the risk of illiquidity while the opposite does not meet customers’ demands. Multi-item inventory management is much more complicated than single item inventory management. This is especially obvious in retailing industry, restaurants and grocery industries when they sell more than one product line. Since some products turns deteriorating over time, each industry has to establish its own policies and rules for inventory management and procurement.
Restaurants’ inventory management is the core industry of this research. The ingredients used in restaurants can easily turn deteriorating. When dividing restaurant’s demands into various scenarios, establishing scenario trees to describe the uncertainty in demands, and implementing a two-stage stochastic programming modeling the question, we aim towards mathematical programming methods to accomplish minimal total inventory cost and optimal ordering policy for each ingredient. According to the sensitive analysis, purchasing cost, deteriorating cost and shortage costs are more sensitive than the other factors. Hence, we advise the decision maker to choose the more stable purchasing cost as the primary source. This study also considers the deteriorating cost and situation for each ingredient to determine purchasing quantity as well as estimating shortage costs for different restaurant guides.
林思辰,不連續階段販賣易腐性商品之訂購政策,國立成功大學工業與資訊管理研究所碩士論文,民國一百零二年六月。
張益菁,考量需求不確定之單階多廠產能規劃問題—以TFT-LCD產業為例,國立清畢大學工業工程與工程管理學研究所碩士論文,民國九十六年。
蘇永隆,以二階段隨機規劃模式探討隨機碳權價格下綠色生產規劃問題,國立成功大學工業與資訊管理研究所博士論文,民國九十八年。
Baker, R. C., & Urban, T. L. (1988). A deterministic inventory system with an inventory-level-dependent demand rate. Journal of the Operational Research Society, 39(9), 823-831.
Bakker, M., Riezebos, J., & Teunter, R. H. (2012). Review of inventory systems with deterioration since 2001. European Journal of Operational Research, 221(2), 275-284.
Chun, Y. H. (2003). Optimal pricing and ordering policies for perishable commodities. European Journal of Operational Research, 144(1), 68-82.
Covert, R. P., & Philip, G. C. (1973). An EOQ model for items with Weibull distribution deterioration. AIIE transactions, 5(4), 323-326..
Ferguson, M., & Ketzenberg, M. E. (2006). Information sharing to improve retail product freshness of perishables. Production and Operations Management, 15(1), 57.
Fries, B. E. (1975). Optimal ordering policy for a perishable commodity with fixed lifetime. Operations Research, 23(1), 46-61.
Georgiadis, P., Vlachos, D., & Iakovou, E. (2005). A system dynamics modeling framework for the strategic supply chain management of food chains. Journal of food engineering, 70(3), 351-364.
Ghalebsaz-Jeddi, B., Shultes, B. C., & Haji, R. (2004). A multi-product continuous review inventory system with stochastic demand, backorders, and a budget constraint. European Journal of Operational Research, 158(2), 456-469.
Ghare, P. M., & Schrader, G. F. (1963). A model for exponentially decaying inventory. Journal of industrial Engineering, 14(5), 238-243.
Giri, B. C., Jalan, A. K., & Chaudhuri, K. S. (2005). An economic production lot size model with increasing demand, shortages and partial backlogging. International Transactions in Operational Research, 12(2), 235-245.
Goyal, S. K. (1985). Economic order quantity under conditions of permissible delay in payments. Journal of the operational research society, 36(4), 335-338.
Goyal, S. K., & Giri, B. C. (2001). Recent trends in modeling of deteriorating inventory. European Journal of operational research, 134(1), 1-16.
Gunders, D. (2012). Wasted: How America is losing up to 40 percent of its food from farm to fork to landfill. Natural Resources Defense Council, 1-26.
He, Y., Wang, S. Y., & Lai, K. K. (2010). An optimal production-inventory model for deteriorating items with multiple-market demand. European Journal of Operational Research, 203(3), 593-600.
Janssen, L., Claus, T., & Sauer, J. (2016). Literature review of deteriorating inventory models by key topics from 2012 to 2015. International Journal of Production Economics, 182, 86-112.
Jiangtao, M., Guimei, C., Ting, F., & Hong, M. (2014). Optimal ordering policies for perishable multi-item under stock-dependent demand and two-level trade credit. Applied Mathematical Modelling, 38(9), 2522-2532.
Lee, Y. P., & Dye, C. Y. (2012). An inventory model for deteriorating items under stock-dependent demand and controllable deterioration rate. Computers & Industrial Engineering, 63(2), 474-482.
Misra, R. B. (1975). Optimum production lot size model for a system with deteriorating inventory. The International Journal of Production Research, 13(5), 495-505.
Mukhopadhyay, S., Mukherjee, R. N., & Chaudhuri, K. S. (2004). Joint pricing and ordering policy for a deteriorating inventory. Computers & Industrial Engineering, 47(4), 339-349.
Muriana, C. (2016). An EOQ model for perishable products with fixed shelf life under stochastic demand conditions. European Journal of Operational Research.
Nahmias, S. (1982). Perishable inventory theory: A review. Operations research, 30(4), 680-708.
Ngai, E. W. T., Suk, F. F. C., & Lo, S. Y. Y. (2008). Development of an RFID-based sushi management system: The case of a conveyor-belt sushi restaurant. International Journal of Production Economics, 112(2), 630-645.
PARK, K. S. (1983). An integrated production-inventory model for decaying raw materials. International Journal of Systems Science, 14(7), 801-806.
Philip, G. C. (1974). A generalized EOQ model for items with Weibull distribution deterioration. AIIE Transactions, 6(2), 159-162.
Raafat, F. (1991). Survey of literature on continuously deteriorating inventory models. Journal of the Operational Research society, 42(1), 27-37.
Raafat, F. F., Wolfe, P. M., & Eldin, H. K. (1991). An inventory model for deteriorating items. Computers & Industrial Engineering, 20(1), 89-94.
Ramadhan, A. N., & Simatupang, T. M. (2012). Determining Inventory Management Policy for Perishable Materials in Roemah Keboen Restaurant. Procedia-Social and Behavioral Sciences, 65, 992-999.
Ruszczyński, Andrzej, and Alexander Shapiro. "Stochastic programming models." Handbooks in operations research and management science 10 (2003): 1-64.
Salameh, M. K., & Jaber, M. Y. (2000). Economic production quantity model for items with imperfect quality. International journal of production economics, 64(1), 59-64.
Sazvar, Zeinab, et al. "A bi-objective stochastic programming model for a centralized green supply chain with deteriorating products." International Journal of Production Economics 150 (2014): 140-154.
Shah, N. H. (1998). A discrete-time probabilistic inventory model for deteriorating items under a known price increase. International journal of systems science, 29(8), 823-827.
Tadikamalla, P. R. (1978). An EOQ inventory model for items with gamma distributed deterioration. AIIE transactions, 10(1), 100-103.
Taleizadeh, A. A., Pentico, D. W., Jabalameli, M. S., & Aryanezhad, M. (2013). An EOQ model with partial delayed payment and partial backordering. Omega, 41(2), 354-368.
Wee, H. M., & Law, S. T. (2001). Replenishment and pricing policy for deteriorating items taking into account the time-value of money. International Journal of Production Economics, 71(1), 213-220.
Zhang, R. Q., Kaku, I., & Xiao, Y. Y. (2011). Deterministic EOQ with partial backordering and correlated demand caused by cross-selling. European Journal of Operational Research, 210(3), 537-551.
Kazemi Zanjani, Masoumeh, Mustapha Nourelfath, and Daoud Ait-Kadi. "A multi-stage stochastic programming approach for production planning with uncertainty in the quality of raw materials and demand." International Journal of Production Research 48.16 (2010): 4701-4723.
校內:2022-07-10公開