| 研究生: |
詹千卉 Chan, Chien-Hui |
|---|---|
| 論文名稱: |
極光精細結構的三反射鏡消像散成像儀之光學鏡片設計 Optical lens design of a Three-Mirror Anastigmat imager for auroral fine structures |
| 指導教授: |
張滋芳
Chang, Tzu-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 太空與電漿科學研究所 Institute of Space and Plasma Sciences |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 極光 、三反射鏡消像差光學架構 、ISUAL 、光學設計 |
| 外文關鍵詞: | Aurora, Three-Mirror Anastigmat Configuration, ISUAL, Optical design |
| 相關次數: | 點閱:23 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出一種三反射鏡消像差(Three-Mirror Anastigmat, TMA)成像儀的光學設計,適用於立方衛星(CubeSat)或一般衛星上的科學酬載,此設計的光學元件被限制在 0.8U 的體積範圍內,其中 1U 代表體積 10 x 10 x 10 cm^3,這體積範圍使該系統適用於小型的衛星架構。該儀器的主要科學目的是觀測電離層中的極光活動,並解析其細微結構,此系統解析度可達到 0.46km/pixel。本研究以台灣福爾摩沙衛星二號(FORMOSAT-2)上 ISUAL 光學儀器為基礎,利用Zemax模擬軟體進行光學設得的分析與優化。相較於 ISUAL 這類的穿透式光學系統,本論文設計的 TMA 光學系統可以更好的修正 Seidel 像差,此設計的調製轉換函數(MTF)在奈奎斯特頻率(Nyquist frequency)下有 0.78 的表現,光學畸變量為 1.2524 %,此結果顯示系統具備良好的成像品質以支援高解析度成像。
This paper presents an optical design of a Three-Mirror Anastigmat (TMA) imager for a scientific payload of a CubeSat or a standard satellite platform. The optical components are constrained to fit within a 0.8U volume, where 1U stands for 10 x 10 x 10 cm^3 volume, making the system suitable for compact satellites.The science goal of the instrument is primarily to observe the auroras in the ionosphere and capture their fine structures. This system can achieve a spatial resolution of approximately 0.46 km/pixel. This study takes the Imager of Sprites and Upper Atmospheric Lightning (ISUAL) onboard the FORMOSAT-2 satellite as a reference system. The optical design analysis and optimization were carried out using Ansys Zemax OpticStudio software. Compared with the refractive optical system, such as ISUAL, the TMA optical system can greatly correct the Seidel aberration. The designed system achieves a Modulation Transfer Function (MTF) of 0.78 at the Nyquist frequency. The system exhibits an optical distortion of 1.2524 %. These results indicate that the TMA system provides image quality suitable for high-resolution imaging applications.
[1] Alister Vallance Jones. Aurora. volume 9. Springer Science & Business Media, 2012
[2] H. U. Frey, S. B. Mende, S. E. Harris, H. Heetderks, Y. Takahashi, H.-T. Su, R.-R. Hsu, A. B. Chen, H. Fukunishi, Y.-S. Chang, et al. The Imager for Sprites and Upper Atmospheric Lightning (ISUAL). volume 121, pages 8134–8145. Wiley Online Library, 2016
[3] Harald U. Frey. Localized aurora beyond the auroral oval. volume 45. Wiley Online Library, 2007
[4] K. W. Liu. Long Term Correlation Study of Observations Between FORMOSAT-2/ISUAL 6300˚A Airglow and FORMOSAT-3/GOX Electron density. Tainan, Taiwan, 2009
[5] T. F. Chang, C. Z. Cheng, C. Y. Chiang, and A. B. Chen. Behavior of substorm auroral arcs and Pi2 waves: implication for the kinetic ballooning instability. In Annales Geophysicae, volume 30, pages 911–926. Copernicus GmbH, 2012
[6] Qingyu Meng. Overview of three-mirror reflective optical system (invited). volume 51, pages 20210986–1, 2022
[7] A. Kutter. More about the tri-schiefspiegler. volume 49, pages 115–120, 1975
[8] Qingyu Meng, Hongyuan Wang, Wei Wang, and Zhiqiang Yan. Desensitization design method of unobscured three-mirror anastigmatic optical systems with an adjustment-optimization-evaluation process. volume 57, pages 1472–1481. Optical Society of America, 2018
[9] Lacy G. Cook. Three-mirror anastigmat used off-axis in aperture and field. In Space Optics II, volume 183, pages 207–211. SPIE, 1979
[10] Mohamed Metwally, Taher M. Bazan, and Fawzy Eltohamy. Design of Very High-Resolution Satellite Telescopes Part I: Optical System Design. volume 56, pages 1202–1208. IEEE, 2019
[11] Stephen B. Mende, Y. S. Chang, A. B. Chen, H. U. Frey, H. Fukunishi, S. P. Geller, S. Harris, H. Heetderks, R. R. Hsu, L. C. Lee, et al. SPACECRAFT BASED STUDIES OF TRANSIENT LUMINOUSEVENTS. In Sprites, Elves and Intense Lightning Discharges, pages 123–149. Springer, 2006
[12] Jong-Ung Lee and Seung-Moon Yu. Analytic Design Procedure of Three-mirror Telescope Corrected for Spherical Aberration, Coma, Astigmatism, and Petzval Field Curvature. volume 13, pages 184–192. OSA, 2009
[13] Anna Riera Salvà. OUFTI-NEXT: STUDY OF REFRACTIVE LENSES FOR AN INFRARED CAMERA, 2019
[14] R. H. Garstang. 1 - Forbidden Transitions. In Pure and Applied Physics, volume 13 of Atomic and Molecular Processes, pages 1–46. Elsevier, 1962
[15] Qingyu Meng, Wei Wang, Hongcai Ma, and Jihong Dong. Easy-aligned off-axis three-mirror system with wide field of view using freeform surface based on integration of primary and tertiary mirror. volume 53, pages 3028–3034. Optical Society of America, 2014
[16] Marija Strojnik, Beethoven Bravo-Medina, Anuar Beltran-Gonzalez, and Yaujen Wang. Off-Axis Three-Mirror Optical System Designs: From Cooke's Triplet to Remote Sensing and Surveying Instruments. volume 13, page 8866. MDPI, 2023
[17] Lacy G. Cook. REFLECTIVE OPTICAL TRIPLET HAVING A REAL ENTRANCE PUPIL. United States Patent 4,733,955, March 29 1988
[18] Robert D. Fiete. Image quality and λfn/p for remote sensing systems. volume 38, pages 1229–1240. SPIE, 1999
校內:2028-07-31公開