簡易檢索 / 詳目顯示

研究生: 鍾宛臻
Chung, Wan-Chen
論文名稱: 以顯微組織定量分析方法研究免疫失調疾病
Quantitative measurement of pathogenic immunodysregulation in histological studies
指導教授: 謝奇璋
Shieh, Chi-Chang
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 49
中文關鍵詞: 免疫組織化學染色IPEX肺部發炎菸醯胺腺嘌呤二核酸磷酸氧化酶TissueGnostics Cytometry
外文關鍵詞: Immunohistochemistry, IPEX, NADPH oxidase, lung inflammation, TissueGnostics
相關次數: 點閱:122下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在臨床上對疾病進程的診斷中,組織學的檢驗是很常見的。組織學的結果讓我們可以直接去觀察發炎部位的情況,是個可以讓我們發現疾病致病原因的工具之一。在本篇研究中,我們利用免疫組織化學染色方法配合較客觀的定量方式去觀察不同類型的T細胞浸潤在IPEX患者的腸道及腎臟檢體中的情況,以及利用甲苯異氰酸酯(TDI)造成小鼠肺部發炎模式中肺部T細胞分佈的情況。IPEX症候群是一種X染色體性聯遺傳的罕見疾病,常發生在幼小的嬰兒或男性孩童身上,產生的症狀包括免疫功能失調、多種內分泌器官病變和腸道病變,IPEX發生的原因目前已知與FOXP3基因突變有關。在本篇研究我們使用甲苯異氰酸酯來引起小鼠肺部發炎,甲苯異氰酸酯是目前常被用來製造聚氨酯等相關產品的化合物,因被發現會引起職業性氣喘而逐漸受到注目。要在組織切片上計算不同細胞類型所占的比例,並為了能得到更客觀的計量結果,我們利用TissueGnostics Cytometry儀器在高倍率條件下去掃描整個組織切片,配合以電腦為主的分析軟體,預計可以增進組織學定量上的正確性與客觀性。我們觀察了在免疫反應中對T細胞分化扮演相當重要角色的一些轉錄因子,包括T-bet、GATA-3、RORt和Foxp3。在對IPEX患者檢體的觀察中,我們發現在以免疫抑制藥物治療之前與Th2細胞分化相關的轉錄因子GATA-3表現的比例比控制組的患者來的高,猜測在IPEX症候群中Th2細胞可能是引起腸道和腎臟發炎症狀的主要細胞。臨床上使用的免疫抑制劑有效地降低了效應性T細胞在組織中的浸潤。在以甲苯異氰酸酯引起小鼠肺部發炎的模式中,我們發現Th17細胞是主要浸潤在肺部的細胞,與我們實驗室先前的研究結果發現與Th17相關的細胞激素IL-17在以甲苯異氰酸酯刺激的組別中較高是一致的。另外,與原生野生型小鼠比較之下,菸醯胺腺嘌呤二核酸磷酸氧化酶(NADPH oxidase)基因缺陷小鼠(Ncf1-/- mice) 在肺部浸潤的細胞中表現較低比例的效應性T細胞,肺部發炎程度也較低,顯示白血球的菸醯胺腺嘌呤二核酸磷酸氧化酶對於甲苯異氰酸酯引起的肺發炎反應是占有重要角色的。藉著利用以電腦分析為主,較客觀的組織學定量方法,我們可以直接觀察到不同疾病中免疫反應的變化,並在組織學的研究上提供了新的分析方法。

    Histological examination is generally used in clinical diagnosis of pathogenic process. It provides a direct observation of local site inflammatory situations and is a tool to find out the cause of diseases. We used immunohistochemistry and objective quantification to detect the different types of T helper cells in the intestine and kidney biopsy blocks of IPEX patient and in the lung of Toluene diisocyanate(TDI)-challenged mice. IPEX (Immunodysregulation, polyendocrinopathy, enteropathy, X-linked) syndrome is a rare X-linked disease found in young infants and children, and the disease associated with FOXP3 mutation has been report. TDI, a compound widely used in the production of polyurethane foams and related products, is noted for inducing occupational asthma. TDI was used to induce airway inflammation in mouse model. For objective counting of the percentages of different cell types in tissues, we use TissueGnostics Cytometry to scan a large overview of slide with high magnification. Computer-assisted analysis enhanced the accuracy and objectiveness in histopathology results. We studied transcription factors critical for immune response including T-bet, GATA-3, RORt and Foxp3. The expression percentage of Th2-associated transcription factor GATA3 in IPEX patient were higher than control before treatment, suggesting Th2 cells were the main cells responsible for intestine and kidney inflammation in IPEX syndrome. Immunosupressive treatments effectively decreased the effect cells in the IPEX patient. In the TDI-induced lung inflammation mice model, we found Th17 cells were the dominant cells infiltrated in the lung, consistent with our previous studies that IL-17 level was increasing in TDI-challenged group. Moreover, NADPH oxidase deficiency (Ncf1-/-) mice show lower percentage of effector cells in infiltration cells than wild type mice, indicating the importance of leukocyte NADPH oxidase in the TDI-induced airway inflammation. By using objective quantification methods to analyze histochemical investigations, we become able to reveal certain critical changes in pathogenic immune response.

    Abstract in English.......................................Ⅰ 中文摘要...................................................Ⅲ 致謝......................................................Ⅴ Table of contents........................................Ⅵ List of Figures..........................................Ⅷ 1. Introduction...........................................1 1.1 Effector T cells are the central players of immune responses…................................................2 1.2 Treg as the regulator in immune response..............4 1.3 Immunodysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX syndrome)...........................5 1.4 Toluene diisocyanate (TDI) induces lung inflammation……............................................6 1.5 NADPH oxidase.........................................8 1.6 Computer-assisted quantification of histological information….............................................10 1.7 Hypothesis...........................................11 2. Materials and methods.................................12 2.1 Patient samples......................................12 2.2 Experimental animals.................................12 2.3 Toluene diisocyanate exposure........................13 2.4 Lung tissue collection...............................13 2.5 Immunohistochemistry.................................13 2.6 Double staining of CD4 and GATA-3....................14 2.7 Quantitative measurement.............................15 2.8 Statistical analysis.................................15 3. Results...............................................16 3.1 Diagnosis of IPEX syndrome with histological examination….............................................16 3.2 Quantification of T helper cell transcription factor expression in the intestine of IPEX patient..................................................17 3.3 Histological examination of renal sections of IPEX syndrome patient revealed change in effector T cell population with immunomodulatory treatment................................................18 3.4 Different T helper cell populations in the lung of TDI-induced lung inflammation in Ncf1-/- mice showed the role of ROS in tissue immune responses...........................19 4. Discussion............................................21 4.1 Targeting of Th2 cells may a effective approach therapy for IPEX syndrome........................................21 4.2 The limitation of clinical samples...................23 4.3 TDI-induced lung inflammation is predominantly mediated by Th17 cells............................................23 4.4 The advantage and disadvantage of HistoQuest.........25 4.5 Immune responses are highly regulated................................................26 4.6 Conclusion...........................................27 5. References............................................28 Figures..................................................33

    Abbas, A.K., Murphy, K.M., and Sher, A. (1996). Functional diversity of helper T lymphocytes. Nature 383, 787-793.
    Baecher-Allan, C., and Hafler, D. (2006). Human regulatory T cells and their role in autoimmune disease. Immunol Rev 212, 203-216.
    Balmes, J., Becklake, M., Blanc, P., Henneberger, P., Kreiss, K., Mapp, C., Milton, D., Schwartz, D., Toren, K., and Viegi, G. (2003). American Thoracic Society Statement: Occupational Contribution to the Burden of Airway Disease. American Journal of Respiratory and Critical Care Medicine 167, 787-797.
    Baud, O., Goulet, O., Canioni, D., Le Deist, F., Radford, I., Rieu, D., Dupuis-Girod, S., Cerf-Bensussan, N., Cavazzana-Calvo, M., Brousse, N., et al. (2001). Treatment of the immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) by allogeneic bone marrow transplantation. N Engl J Med 344, 1758-1762.
    Baur, X., Marek, W., Ammon, J., Czuppon, A.B., Marczynski, B., Raulf-Heimsoth, M., Roemmelt, H., and Fruhmann, G. (1994). Respiratory and other hazards of isocyanates. Int Arch Occup Environ Health 66, 141-152.
    Bedard, K., and Krause, K.H. (2007). The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87, 245-313.
    Bennett, C.L., Christie, J., Ramsdell, F., Brunkow, M.E., Ferguson, P.J., Whitesell, L., Kelly, T.E., Saulsbury, F.T., Chance, P.F., and HD, O. (2001). The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27, 20-21.
    Berkley R. Powell, Neil R.M. Buist, and Stenzel, P. (1982). An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy. J Pediatr 100, 731-737.
    Bernstein, I.L., Chan-Yeung, M., Malo, J.-L., and Bernstein, D.I. (1993). Asthma in the Workplace. New York:Marcel Dekker,, 1-4.
    Bernstein, J.A. (1996). Overview of diisocyanate occupational asthma. Toxicology 111, 181-189.
    Bindl, L., Torgerson, T., Perroni, L., Youssef, N., Ochs, H.D., Goulet, O., and Ruemmele, F.M. (2005). Successful Use of the New Immune-suppressor Sirolimus in IPEX (Immune Dysregulation, Polyendocrinopathy, Enteropathy, X-linked Syndrome). The Journal of Pediatrics 147, 256-259.
    Coffman, R.L., Seymour, B.W., Lebman, D.A., Hiraki, D.D., Christiansen, J.A., Shrader, B., Cherwinski, H.M., Savelkoul, H.F., Finkelman, F.D., and Bond, M.W. (1988). The role of helper T cell products in mouse B cell differentiation and isotype regulation. Immunol Rev 102, 5-28.
    Costantino, C.M., Baecher-Allan, C.M., and Hafler, D.A. (2008). Human regulatory T cells and autoimmunity. European Journal of Immunology 38, 921-924.
    Das, J., Chen, C.H., Yang, L., Cohn, L., Ray, P., and Ray, A. (2001). A critical role for NF-κB in Gata3 expression and TH2 differentiation in allergic airway inflammation. Nat Immunol 2, 45-50.
    Di Rocco, M., and Marta, R. (1996). X linked immune dysregulation, neonatal insulin dependent diabetes, and intractable diarrhoea. Arch DisChild 75, F144-F144.
    Dong, C. (2006). Diversification of T-helper-cell lineages: finding the family root of IL-17-producing cells. Nat Rev Immunol 6, 329-333.
    Dong, C. (2008). TH17 cells in development: an updated view of their molecular identity and genetic programming. Nature Reviews Immunology 8, 337-348.
    Dykewicz, M.S. (2009). Occupational asthma: Current concepts in pathogenesis, diagnosis, and management. Journal of Allergy and Clinical Immunology 123, 519-528.
    Eberl, G., Marmon, S., Sunshine, M.-J., Rennert, P.D., Choi, Y., and Littman, D.R. (2003). An essential function for the nuclear receptor RORγt in the generation of fetal lymphoid tissue inducer cells. Nature Immunology 5, 64-73.
    Ferguson, P.J., Blanton, S.H., Saulsbury, F.T., McDuffie, M.J., Lemahieu, V., Gastier, J.M., Francke, U., Borowitz, S.M., Sutphen, J.L., and Kelly, T.E. (2000). Manifestations and linkage analysis in X-linked autoimmunity-immunodeficiency syndrome. Am J Med Genet 90, 390-397.
    Finkelman, F.D., Boyce, J.A., Vercelli, D., and Rothenberg, M.E. (2010). Key advances in mechanisms of asthma, allergy, and immunology in 2009. Journal of Allergy and Clinical Immunology 125, 312-318.
    Fontenot, J.D., Gavin, M.A., and Rudensky, A.Y. (2003). Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4, 330-336.
    Gershon, R.K., Cohen, P., Hencin, R., and Liebhaber, S.A. (1972). Suppressor T Cells. J Immunol 108, 586-590.
    Glimcher, L.H., and Murphy, K.M. (2000). Lineage commitment in the immune system: the T helper lymphocyte grows up. Genes Dev 14, 1693-1711.
    Hancock, J.T., Desikan, R., and Neill, S.J. (2001). Role of reactive oxygen species in cell signalling pathways. Biochem Soc Trans 29, 345-350.
    Harrington, L.E., Mangan, P.R., and Weaver, C.T. (2006). Expanding the effector CD4 T-cell repertoire: the Th17 lineage. Curr Opin Immunol 18, 349-356.
    Herrick, C. (2002). A novel mouse model of diisocyanate-induced asthma showing allergic-type inflammation in the lung after inhaled antigen challenge. Journal of Allergy and Clinical Immunology 109, 873-878.
    Hohn, D.C., and Lehrer, R.I. (1975). NADPH oxidase deficiency in X-linked chronic granulomatous disease. J Clin Invest 55, 707-713.
    Hoidal, J.R., Brar, S.S., Sturrock, A.B., Sanders, K.A., Dinger, B., Fidone, S., and Kennedy, T.P. (2003). The role of endogenous NADPH oxidases in airway and pulmonary vascular smooth muscle function. Antioxid Redox Signal 5, 751-758.
    Hori, S. (2003). Control of Regulatory T Cell Development by the Transcription Factor Foxp3. Science 299, 1057-1061.
    Kastelein, R.A., Hunter, C.A., and Cua, D.J. (2007). Discovery and Biology of IL-23 and IL-27: Related but Functionally Distinct Regulators of Inflammation. Annual Review of Immunology 25, 221-242.
    Lee, M., Park, S., Park, H.S., and Youn, J.K. (1998). Cytokine secretion patterns of T cells responding to haptenized-human serum albumin in toluene diisocyanate (TDI)-induced asthma patients. J Korean Med Sci 13, 459±465.
    Leonardo, S.M., Josephson, J.A., Hartog, N.L., and Gauld, S.B. (2010). Altered B Cell Development and Anergy in the Absence of Foxp3. The Journal of Immunology 185, 2147-2156.
    Liu, S.-Y., Wang, W.-Z., Yen, C.-L., Tsai, M.-Y., Yang, P.-W., Wang, J.-Y., Ho, C.-Y., and Shieh, C.-C. (2011). Leukocyte nicotinamide adenine dinucleotide phosphate-reduced oxidase is required for isocyanate-induced lung inflammation. Journal of Allergy and Clinical Immunology 127, 1014-1023.
    Loddenkemper, C. (2009). Diagnostic Standards in the Pathology of Inflammatory Bowel Disease. Digestive Diseases 27, 576-583.
    Louten, J., Boniface, K., and de Waal Malefyt, R. (2009). Development and function of TH17 cells in health and disease. Journal of Allergy and Clinical Immunology 123, 1004-1011.
    Mapp, C.E. (2005). Occupational Asthma. Am J Respir Crit Care Med 172, 280-305.
    Matheson, J.M., Lange, R.W., Lemus, R., Karol, M.H., and Luster, M.I. (2001). Importance of inflammatory and immune components in a mouse model of airway reactivity to toluene diisocyanate (TDI). Clin Exp Allergy 31, 1067-1076.
    McCord, J.M., and Fridovich, I. (1969). The utility of superoxide dismutase in studying free radical reactions. I. Radicals generated by the interaction of sulfite, dimethyl sulfoxide, and oxygen. J Biol Chem 244, 6056-6063.
    Parker, D.C. (1993). T cell-dependent B cell activation. Annu Rev lmmunol 11, 331-360.
    Rahman, I. (2002). Oxidative stress and gene transcription in asthma and chronic obstructive pulmonary disease: antioxidant therapeutic targets. Curr Drug Targets Inflamm Allergy 1, 291-315.
    Roberts, J., and Searle, J. (1995). Neonatal diabetes mellitus associated with severe diarrhea, hyperimmunoglobulin E syndrome, and absence of islets of Langerhans. Pediatr Pathol Lab Med 15, 477-483.
    Sakaguchi, S., Yamaguchi, T., Nomura, T., and Ono, M. (2008). Regulatory T Cells and Immune Tolerance. cell 133, 775-787.
    Satake, N., Nakanishi, M., Okano, M., Tomizawa, K., Ishizaka, A., Kojima, K., Onodera, M., Ariga, T., Satake, A., and Sakiyama, Y. (1993). A Japanese family of X-linked auto-immune enteropathy with haemolytic anaemia and polyendocrinopathy. Eur J Pediatr 152, 313-315.
    Savage, M.O., Mirakian, R., Harries, J.T., and Bottazzo, G.F. (1982). Could protracted diarrhoea of infancy have an autoimmune pathogenesis? Lancet 1, 966-967.
    Schnyder-Candrian, S., Togbe, D., Couillin, I., Mercier, I., Brombacher, F., Quesniaux, V., Fossiez, F., Ryffel, B., and Schnyder, B. (2006). Interleukin-17 is a negative regulator of established allergic asthma. Journal of Experimental Medicine 203, 2715-2725.
    Seidman, E.G., Lacaille, F., Russo, P., Galeano, N., Murphy, G., and Roy, C.C. (1990). Successful treatment of autoimmune enteropathy with cyclosporine. J Pediatr 117, 929-932.
    Shevach, E.M. (2009). Mechanisms of Foxp3+ T Regulatory Cell-Mediated Suppression. Immunity 30, 636-645.
    Shoenfeld, Y., Gilburd, B., Abu-Shakra, M., Amital, H., Barzilai, O., Berkun, Y., and Blank, M. (2008a). The Mosaic of Autoimmunity: Genetic Factors Involved in autoimmune diseases. Isr Med Assoc J 10, 3-7.
    Shoenfeld, Y., Zandman-Goddard, G., Stojanovich, L., Cutolo, M., Amital, H., Levy, Y., Abu-Shakra, M., Barzilai, O., and Berkun, Y. (2008b). The Mosaic of Autoimmunity: Hormonal and Environmental Factors involved in autoimmune diseases. Isr Med Assoc J 10, 8-12.
    Skapenko, A. (2004). GATA-3 in Human T Cell Helper Type 2 Development. Journal of Experimental Medicine 199, 423-428.
    Susanne J. Szabo, Sean T. Kim, Gina L. Costa, Xiankui Zhang, C. Garrison Fathman, and Glimcher, L.H. (2000). A Novel Transcription Factor, T-bet, Directs Th1 Lineage Commitment. cell 100, 655-669.
    Tarlo, S.M. (2006). Critical Aspects of the History of Occupational Asthma. Allergy, Asthma, and Clinical Immunology 02, 74.
    Torgerson, T.R. (2006). Regulatory T cells in human autoimmune diseases. Springer Semin Immun 28, 63-76.
    Tse, H.M., Thayer, T.C., Steele, C., Cuda, C.M., Morel, L., Piganelli, J.D., and Mathews, C.E. (2010). NADPH Oxidase Deficiency Regulates Th Lineage Commitment and Modulates Autoimmunity. The Journal of Immunology 185, 5247-5258.
    van der Vliet, H.J.J., and Nieuwenhuis, E.E. (2007). IPEX as a Result of Mutations in FOXP3. Clin Dev Immunol 2007, 1-5.
    Vignali, D.A.A., Collison, L.W., and Workman, C.J. (2008). How regulatory T cells work. Nature Reviews Immunology 8, 523-532.
    Walker-Smith, J.A., Unsworth, D.J., Hutchins, P., Phillips, A.D., and Holborow, E.J. (1982). Autoantibodies against gut epithelium in child with small-intestinal enteropathy. Lancet 1, 566-567.
    Wang, J., Li, X., Jia, Z., Tian, Y., Yu, J., Bao, L., Wu, Y., and Ni, B. (2010). Reduced FOXP3 expression causes IPEX syndrome onset: An implication from an IPEX patient and his disease-free twin brother. Clin Immunol 137, 178-180.
    Wildin, R.S., Ramsdell, F., Peake, J., Faravelli, F., Casanova, J., and Buist, N. (2001). X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nature Genet 27, 18-20.
    Wildin, R.S., Smyk-Pearson, S., and Filipovich, A.H. (2002). Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J Med Genet 39, 537-545.
    Wilkinson, B.L., and Landreth, G.E. (2006). The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer's disease. J Neuroinflammation 3, 30.
    Wisnewski, A.V., and Redlich, C.A. (2001). Recent developments in diisocyanate asthma. Curr Opin Allergy Clin Immunol 1, 169-175.
    Yong, P.L., Russo, P., and Sullivan, K.E. (2008). Use of Sirolimus in IPEX and IPEX-Like Children. Journal of Clinical Immunology 28, 581-587.
    Zhan, H., Sinclair, J., Adams, S., Cale, C.M., Murch, S., Perroni, L., Davies, G., Amrolia, P., and Qasim, W. (2008). Immune Reconstitution and Recovery of FOXP3 (Forkhead Box P3)-Expressing T Cells After Transplantation for IPEX (Immune Dysregulation, Polyendocrinopathy, Enteropathy, X-linked) Syndrome. Pediatrics 121, e998-e1002.
    Zhu, J., Yamane, H., Cote-Sierra, J., Guo, L., and Paul, W.E. (2006). GATA-3 promotes Th2 responses through three different mechanisms: induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Th1 cell-specific factors. Cell Research 16, 3-10.

    下載圖示 校內:2016-08-11公開
    校外:2016-08-11公開
    QR CODE