簡易檢索 / 詳目顯示

研究生: 羅鈞云
Luo, Chun-Yun
論文名稱: 譜方法解單域心電波方程
Pseudospectral Methods for Monodomain Electrocardiac Wave Equations
指導教授: 鄧君豪
Teng, Chun-Hao
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 60
中文關鍵詞: 譜方法多域格式Luo-Rudy 模型Hodgkin-Huxley 模型動作電位波
外文關鍵詞: pseudospectral penalty methods, Luo-Rudy model, multidomain formulation., Hodgkin-Huxley model, action potential wave
相關次數: 點閱:159下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文的主題是介紹用數值譜方法對動作電位傳播問題的建構方式,對此類問題的wellposeness分析及計算格式的穩定性皆有討論。

      對本類問題我們先尋找邊界條件的形式,進而運用數值譜方法建構其格式,以解動作電位在神經軸索及心肌組織上的傳播行為。對於基礎模型類的問題,本計算格式皆可成功的模擬動作電位的傳播,且與其他研究所獲得結果一致。最後,我們對此格式在求解實際的動作電位問題提出一些建議。

     In this thesis a general framework of constructing multidimensional pseudospectral schemes for simulating action potential wave propagating on excitable membranes.
    Issues related to the wellposeness of the problems and to the stability of the schemes are emphasized especially. Our approach starts from the analyzing such wave problems and wellposed boundary operators are identified. We then employ pseudospectral penalty formulations to construct computational schemes for solving problems such as traveling solutions of a nerve impulse propagating on axon fibers and action potential waves propagating on cardiac tissues. Issues related to the stability of the schemes are analyzed and discussed in details. Our main result is that the schemes are stable in the discrete $L_2$ norm at the semidiscrete level. The performances of the schemes are illustrated through numerical results computed by the schemes for model problems, and our results agree with those computed by other research groups. Issues related to the complexities involved in realistic computations and suggestions for conducting such problems are discussed as well.

    Contents 1 Introduction.............................................3 2 Preliminaries............................................5 2.1 Hodgkin-Huxley Model...................................5 2.2 Cardiac Model.........................................10 3 Mathematical Analysis for Action Potential Wave Problems..13 3.1 Action Potential Waves on Axon Fiber..................13 3.1.1 Boundary Operators for Wellposedness................14 3.2 Action Potential Waves on Cardiac Tissue..............18 3.2.1 Wellposed Analysis for Cardiac Wave Problem.........19 4 Numerical Analysis......................................23 4.1 Preliminaries.........................................23 4.2 Stability Analysis : Schemes for 1D Axon Problems.....26 4.3 Stability Analysis : Schemes for 3D Cardiac Problems..33 5 Computational Results...................................47 5.1 Time Marching Scheme..................................47 5.2 Results for Axon......................................48 5.3 Numerical Computations for Cardiac Waves..............50 5.3.1 1D Results..........................................50 5.3.2 2D Results..........................................52 6 Conclusions and Remarks.................................56

    [1] C. Canuto, M. Hussaini, A. Quarteroni and T. Zang.
    Spectral Methods in Fluid Dynamics. Springer Series in Computational Physics,Springer-Verlag,Berlin,1988.
    [2] M.H. Carpenter and D. Gottlieb. Spectral methods on arbitrary grids. J. Comput. Phys.,129 (1996), pp. 74-86.
    [3] K. S. Cole, H. A. Antosiewicz and P. Rabinowitz.
    Automatic computation of nerve excitation. Journal of the Society for Industrial and Applied Mathematics, 3 (1955), pp. 153-172.
    [4] J. W. Cooley and F. A. Dodge. Digital computer solutions for excitation and propagation of the nerve impulse. Biophysical Journal, 6 (1966), pp. 583-599.
    [5] C. Elizabeth. A Space-time Adaptive Mesh Refinement Method for Simulating Complex Cardiac Electrical Dynamics. PhD thesis, Duke University, 2000.
    [6] R. Fitzhugh and H. A. Antosiewicz. Automatic computation of nerve excitation-detailed correction and additions. Journal of the Society for Industrial and Applied Mathematics, 7 (1959), pp. 599-613
    [7] D. Funaro and D. Gottlieb. A new method of imposing boundary conditions in pseudospectral approximations od hyperbolic equations. Math. Comp., 51 (1988), pp. 599-613.
    [8] D. Gottlieb, M. Y. Hussaini and S. Orszag.
    Theory and applications of spectral methods, in Spectral Methods for Partial Differential Equations, SIAM, 1984.
    [9] D. Gottlieb and S. Orszag. Numerical Analysis of Spectral Methods : Theory and Applications. CBMS-NSF Regional Conference Series in Applied Mathenatics, SIAM, Philadelphia, PA, 1977.
    [10] B. Gustafsson, H. Kreiss and J. Oliger. Time Dependent Problems and Difference Methods. Wiley, 1995.
    [11] D. M. Harrild and C. S. Henriquez. A finite volume model of cardiac propagation. Annals of Biomedical Engineering, 25 (1997), pp. 315-334.
    [12] C. S. Henriquez, F. V. Tranquillo, D. Weinstein, E. W. Hsu and C. R. Fobnson. Three-dimensional propagation in mathematic models : Integrative model of the mouse heart,
    in Cardiac Electrophysiology : From Cell to Bedside, D. Zipes and J. Jalife, eds., W.B. Saunders Company, 2004.
    [13] J. S. Hesthaven. A stable penalty method for the compressible navierstokes equations. I. Open boundary conditions. SISM J.Sci. Comp., 17 (1996), pp. 579-612.
    [14] J. S. Hesthaven. A stable penalty method for the compressible navier-stokes equations. II. One-dimensional domain decomposition. SIAM J. Sci. Comp. 18 (1997), pp. 658-685.
    [15] J. S. Hesthaven. A stable penalty method for the compressible navier-stokes equations. II. Multidimensional domain decomposition schemes. SIAM J. Sci. Comp., 20 (1999), 99. 63-92.
    [16] J. S. Hesthaven, P. Dinesen and J. Lynov. Spectral collocation time-domain modeling of diffractive optical elements. Journal of Computational Physics, 155 (1999), pp. 287-306.
    [17] J. S. Hesthaven, P. Dinesen and J. Lynov Stable spectral methods for conservation laws on triangles unstructured grids. Comput. Methods Appl. Mech. Engrg., 175 (1999), pp. 361-381.
    [18] J. S. Hesthaven and C. H. Teng. Stable spectral methods on tetrahedral elements. SIAM J. Sci. Comp., 21 (2000), pp. 2352-2380.
    [19] A. L. Hodhkin and A. F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 117 (1952), pp. 500-544.
    [20] C. H. Luo and Y. Rudy. A model of the ventricular cardiac action potential : Depolarization, repolarization, and their interaction. Circulation Research, 68 (1991), pp. 1501-1526.
    [21] C. H. Luo and Y. Rudy. A dynamic model of the cardiac ventricular action potential : I. simulations of ionic currents and concentration changes. Circulation Research, 74 (1994), pp. 1071-1095.
    [22] C. H. Luo and Y. Rudy. A dynamic model of the cardiac ventricular action potential : II. Afterdepolarizations, triggered activity, and potentiation. Circulation Research, 74 {1994}, pp. 1097-1113.
    [23] R. Plonsey and R. C. Bioelectricity : A quantitative approach. Kluwer Academic/Plenum Publishers, 2000.
    [24] W. Quan, S. Evans and H. Hasting. Efficient integration of a realistic two-dimensional cardiac tissue model by domain decomposition. IEEE Transactions on Biomedical Engineering, 45 (1998), pp. 372-385.
    [25] J. M. Rogers and A. D. Mcculloch. A collocation-galerkin finite element model of cardiac action potential propagation. IEEE Transctions on Biomedical Engineering, 41 (1994), pp. 743-757.
    [26] H. I. Saleheen and K. T. Ng. A new three-dimensional finite difference bibdomain formulation for inhomogeneous anisotropic cardiac tissues. IEEE Transactions on Biomedical Engineering, 45 (1998), pp.15-25.
    [27] Z. Zhan and K. T. Ng. Two-dimensional chebyshev pseudospectral modeling of cardiac propagation.
    Medical & biological engineering & computing, 38 (2000) pp. 311-318.

    下載圖示 校內:2006-09-02公開
    校外:2006-09-02公開
    QR CODE