| 研究生: |
卓士淮 Cho, Shih-Huai |
|---|---|
| 論文名稱: |
加熱部與冷卻部面積對熱管氣相流場之影響數值模擬 Numerical Analysis on the Gas-Phase Flowfield of the Heat Pipe as related to its Evaporator and Condenser Surface Area |
| 指導教授: |
江滄柳
Jiang, Tsung-Leo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 數值模擬 、氣相流場 、熱管 |
| 外文關鍵詞: | Numerical Analysis, Gas-Phase Flowfield, Heat Pipe |
| 相關次數: | 點閱:54 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
熱管具有高傳熱量與熱響應迅速以及構造簡單不需額外提供動力等特性,可稱之為熱的超導體。本論文已建立三維熱管之流場數值分析模式,並完成三維熱管之氣相流場數值模擬程式之建立,並以此程式分析不同參數組合對熱管氣相流場的影響,探討的參數包括:受熱面積的大小、作動溫度的高低、總熱通量的多寡。由數值模擬的結果可知,減少總受熱面積的大小將使的蒸發端每單位面積的入口流量增加,同時受熱的位置亦是直接影響內部流場性質分布的關鍵,但只要質流率一定,受熱面積的位置與大小對絕熱段的最大速度影響不大。而作動溫度的高低將影響流場的飽和密度,如在質流率一定的條件下,作動溫度愈高則流場飽和密度愈大且絕熱段的最大速度愈小。另外增加總熱通量將使蒸發端入口流速與絕熱段的最大速度亦同步加大。
The heat pipe is a simple and power-free device that is characterized by a high heat transfer capacity and a short thermal response time. In the present thesis, the physical models for the flow analysis of a heat pipe have been formulated, and a newly developed computer simulation code has developed for the analysis of the three-dimensional gas-phase flowfield. The effects of various combination of parameters on the gas-phase flowfield of heat pipe have been explored. The parameters investigated include: heating area, working temperature, and total heat flux. The calculated results indicate that the decrease of total heating area leads to the increase of the mass flux in the evaporated region, and the heating position is also the key point on the distribution of flow properties. If the total mass flow rate is fixed, the effect of the heating position on the maximum velocity in the adiabatic region is insignificant. Under the assumption of saturated pressure in the gas flow, the increase of working temperature leads to the increase of density in the gas flow, resulting in the decrease of maximum velocity in the adiabatic region. The increase of total heat flux leads to the increase of velocity of inflow and maximum velocity in the adiabatic region.
參考文獻
[1] W. S. Chang and G. T. Colwell, “Mathematical Modeling of the Transient Operating Characteristics of a Low- Temperature Heat Pipe”, Numerical Heat Transfer, Vol 8, pp169-186, 1985.
[2] J. M. Tournier and M. S. El-Genk, ” A Heat Pipe Transient Analysis Model ”, Int. J. Heat Mass Transfer, Vol.37, No.5, pp.753-762, 1994.
[3] Z. J. Zuo and A. Faghri, ” Boundary Element Approach To Transient Heat Pipe analysis ”, Numerical Heat Transfer, PartA, pp205-220, 1997.
[4] M. Chen and A. Faghri, “ An Analysis of the Vapor Flow and the Heat Conduction Through the Liquid-Wick and Pipe Wall in a Heat Pipe with Single or Multiple Heat Source “, Int. J. Heat Mass Transfer, vol.33, no.9, pp.1945-1955, 1990.
[5] N. Zhu and K. Vafai, ” Vapor and Liquid Flow in an Asymmetrical Flat Plate Heat Pipe: A Three-Dimensional Analytical and Numerical Investigation ”, Int. J. Heat Mass Transfer, Vol.41, No.1, pp.159-174, 1998.
[6] J. H. Rosenfeld, “ Modeling of Heat Transfer into a Heat Pipe for a Localized Heat Input Zone”, Proc. AIChE Symp. Ser. Heat Transfer, vol.83, pp.71-76, 1987.
[7] 趙晏佑,嵌入式散熱效益之研究,碩士論文,國立成功大學工科所,2000。
[8] 賴衍村,熱管散熱效益之研究,碩士論文,國立成功大學工程科學所,2001。
[9] 卓世傑,銅粉燒結型微熱管之研究,碩士論文,國立台北科技大學機
電整合研究所,2000。
[10]黃文宏,燒結式微熱管之製造與性能測試,碩士論文,國立台灣大學機械研究所,2000。
[11] Yuwen Zhang and Amir Faghri, “ Numerical Simulation of Condensation on a Capillary Grooved Structure “, Numerical Heat Transfer, Part A, 39: 227-243, 2001.
[12] Ding-Yu Peng and Donald B. Robinson, “ A New Two Constant Equation of State ”, Ind. Eng. Chem.,Fundam., Vol.15, pp.59 – 64, 1976.
[13] Jens Ahlers, Jurgen Gmehling, “ Development of an Universal Group Contribution Equation of State: 1. Prediction of Fluid Densities for Pure Compounds with an Volume Translated Peng-Robinson Equation of State “, Fluid Phase Equilibria 191 (2001) 177-188.
[14] Suhas V. Patankar, “ Numerical Heat Transfer and Fluid Flow ”, pp.44 - 47
[15] A. A. Amsden, “KIVA-3: A KIVA Program with Block-Structured Mesh for Complex Geometries ”, Los Alamos National Laboratory Report LA-12503-MS, 1993.
[16] A. A. Amsden, P. J. O’Rourke, and T. D. Butler, “KIVA-2: A Computer Program for Chemically Reactive Flows with Sprays ”, Los Alamos National Laboratory Report LA-11560-MS, 1989.
[17] C. W. Hirt, A. A. Amsden, and J. L. Cook, J. Comput. Phys. ,Vol. 14, pp.227, 1974.
[18] W. E. Pracht, J. Comput. Phys.,Vol. 17, pp.132, 1975.
[19] S. V. Patankar, “ Numerical Heat Transfer and Fluid Flow ”, Hemisphere, Washington, D. C., 1980.
[20] Toumi, I., Kumbaro, A., and Paillere, H., “ Approximate Riemann Solvers and Flux Vector Splitting Schemes for Two- Phase Flow “, VKI Lecture Series 1999-03, 30th Computational Fluid Dynamics, von Karmann Institute, Belgium, 1999.
[21]熱管技術理論實務(HEAT PIPE TECHNOLOGY),依日光 編著.
[22] Robert C. Reid and John M. Prausnitz, Bruce E. Poling, “ The Properties of Gases & Liquids ”, Chemical Engineering Series, 1988.
[23] M. Necati Ozisik, “Heat Conduction”, 1993.
[24]美國Kryotech公司, http://www.kryotech.com
[25] William Schick and Gordon Silverman, “ Fortran 90 and Engineering Computation ”, 1994
[26] AMD Athlon 超頻網站 http://www.athlonoc.org