簡易檢索 / 詳目顯示

研究生: 魏倫佑
wei, lun-yu
論文名稱: 軸對稱光學系統的波前像差與光線像差的多項式研究
The Study of Aberration Polynomials of Wave-front and Ray Aberrations of Axis Symmetrical Optical Systems
指導教授: 林昌進
Lin, Psang-Dain
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 70
中文關鍵詞: 近軸光學理論波前像差光線像差
外文關鍵詞: Paraxial optics theory, Wave-front aberration, Ray aberration
相關次數: 點閱:125下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全真映像存在於近軸光區,一旦系統有了定值光瞳孔徑或視場,像差便產生。若用幾何光學的觀念,當光線和光軸的角度大到近軸光學理論無法精確描述,成像缺陷便應運而生,一般來說入射光線角度越大,像差越顯著。
    本論文主要是探討波前像差多項式與光線像差多項式的數學理論,分析入射光線兩個角度α0與β0,對軸對稱光學系統的兩種像差多項式的展開式做討論。上述兩種像差多項式,傳統上是以出光瞳極座標系為冪級數展開式。本論文不用出光瞳極座標系,而是以入射光線的角度α0與β0,推導波前像差多項式與光線像差多項式。此法雖然對主光線的描述較複雜,角度α0與β0也不同於出光瞳極座標系具有方便性,但卻能真實的呈現入射光線的角度和波前像差多項式與光線像差的關係。希望對於光學系統設計者,可直接從入射光線的角度α0與β0,評估各種類型的像差,進而設計更完善的光學系統。

    Ideal image formation is located at paraxial region, once the system has pupil diameter value or field of view, aberration will immediately appear. If uses the concept of geometrical optics, when the angle between light and optical axis is too big to be described accurately, it will cause the imaging defects. For general speaking the larger the angle, the greater the difference of aberration will be appear.
    This paper will place its focus on discussing mathematical theories of polynomials of wave-front and ray aberrations. To discuss these two kind of aberration polynomial expansions in a axisymmetric optical system, We analyze the incident light angles α0 and β0. Traditionally, these two aberration polynomials are based on the pupil polar coordinates for the power series expansion. In this paper, we derived wave-front aberration polynomials and ray aberration polynomials by the angles α0 and β0 of incident light instead of using the pupil polar coordinates. Although it is complex to describe the chief ray, and the angles α0 and β0 of incident light are not convenience as the pupil polar coordinates, but it can be truly presented the relationship between the angles of incident light and wave-front aberration polynomials or ray aberration polynomials. We hope optics system designers can evaluate the various types of aberrations by tracing the angles α0 and β0 of incident light, and then to design better optics systems.

    中文摘要I ABSTRACTII 誌謝III 目錄IV 表目錄VII 圖目錄VIII 符號說明XI 第一章 緒論1 1.1 前言1 1.2 文獻回顧2 1.3 幾何光學基本原理3 1.4 齊次座標轉換6 1.5 歪斜光線追蹤11 1.6 本文架構13 第二章 賽德像差14 2.1 旋轉對稱系統下的像差特性14 2.2 初階波前像差類型描述19 2.3 波前像差和光線像差之關係21 2.4 初階賽德像差探討25 2.4.1 球差25 2.4.2 慧形像差29 2.4.3 像散31 2.4.4 場曲33 2.4.5 畸變34 第三章 波前像差分析37 3.1 波前像差函數的建立37 3.2 旋轉不變量39 3.3 波前像差展開式42 3.4 本章小結47 第四章 光線像差48 4.1 光線傳播48 4.2 光線像差的對稱性50 4.3 光線像差位置不變量53 4.3.1 xn方向位置不變量53 4.3.2 zn方向位置不變量56 4.4 光線像差展開式59 4.4.1 xn方向光線像差展開式59 4.4.2 zn方向光線像差展開式61 4.4.3 小結64 第五章 結論與展望65 參考文獻67 自述70

    1.Aiton,E.J.,“Johannes Kepler in the Light of Recent Research,”History of Science,Vol.14,pp.77-1OO,1976.
    2.N. M. Swerdlow, “Optical Profusion,”Chicago Journal,Isis,Vol.77,No.1,(1986),pp.136-140.
    3.David R.Wilkins,“on a General Method of Expressing the Paths of Light,and of the Planets,by the Coefficients of a Characteristic Function by William Rowan Hamilton,”Dublin University Review and Quarterly Magazine,1(1833),pp.795-826.
    4.Seidel,Ludwig,“Zur Dioptrik,von Ludwig Seidel,”
    Astronomische Nachrichten,volume 37,pp.105-109,1853.
    5.Gullstrand,Allvar,“Über Astigmatismus,Koma und Aberration,”Annalen der Physik,vol.323,Issue 15,pp.941-973,1905.
    6.V.N. Mahajan,“Zernike annualr polynomials for imaging systems with annular pupils,”J.Opt.Soc.America,Vol.71,pp. 75-85,1981;also“Zernike annular polynomials and optical aberrations of systems with annular pupils,”Appl.Opt.,vol. 33,issue 34,pp.8125,1994.
    7.J.L. Rayces,“Exact relations between wave aberration and ray aberration,”Optica Acta 11,pp.85-88,1964.
    8.R. Gelles,“Off-center aberrations in nonaligneded systems,”J. Opt.Soc.Am.68,pp.1250-1254,1978.
    9.P.L. Ruben,“Aberrations arising from decenterations and tilts,”J.Opt.Soc.Am.54,pp.45-52,1964.
    10.Virendra N. Mahajan“Optical Imaging and Aberration-Part1 Ray Geometrical Optics”Spie Optical Engineering Press
    11.K. Miyamoto,“On a comparison between wave optics and geometrical optics by using Fourier analysis.I.General Theory,”J.Opt.Soc.Am.48,pp.57-63,1958;“Π.Astigmatism,coma, spherical aberration”48,pp.567-575,1958;“Ⅲ.Image evaluation by spot diagram,”49,pp.35-40,1959;also,“Wave optics and geometrical optics in optical design”Progress in Optics,Vol.1,pp.31-65,1960.
    12.E. Hecht,Optics,3rd Edition,Addison-Wesley Publishing Company.1998.
    13.M. Laikin,Lens Design,Second Edition,New York,Marcel Dekker,Inc.1995.
    14.Longhurst R.S.,Geometrical and Physical Optics,Longmans Green,pp.42-44,1964.
    15.Gerrard A.,Burch J.M.,Introduction to Matrix Methods in Optics,Wiley,London,pp.1-23,1975.
    16.Warren J.Smith,Modern Optical Engineering,3rd edition, the Mcgraw-Hill Companies,Inc.
    17.W.T. Welford,Aberrations of optical systems,Taylor & Francis Group,1986.
    18.K.K. Sharma,Optics,Academic Press,2006
    19.Max Born and Emil Wolf,Principles of optics,7th edition, Cambridge university press,New york,1999
    20.Virendra N. Mahajan,Aberration theory made simple,Spie press,1991
    21.Eustace L. Dereniak and Teresa D.Dereniak,Geometrical and trigonometric optics, Cambridge university press,New york,2008
    22.P.D. Lin and W. Wu,Calculation of the modulation transfer function for object brightness distribution function oriented along any direction in axis-symmetrical optical systems,Applied Optics,Vol.50,Issue 17,pp.2759-2772 ,2011
    23.張弘著,幾何光學,國立編譯館主編,東華書局印行。
    24.趙凱華,鍾錫華編著,光學,儒林圖書公司,初版2刷1997年4月.

    無法下載圖示 校內:2016-07-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE