簡易檢索 / 詳目顯示

研究生: 李紳農
Li, Shen-Lung
論文名稱: 複合式脈衝陽極氧化鋁及磁性合金奈米線
The fabrication of porous aluminum oxide template and magnetic alloy nanowires using hybrid pulse voltage
指導教授: 鍾震桂
Chung, Chen-Kuei
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 94
中文關鍵詞: 合金陽極氧化鋁磁鐵性質奈米結構奈米線複合式脈衝陽極氧化
外文關鍵詞: Alloys, Porous anodic aluminum oxide, Magnetic properties, nanostructure, nanowires, hybrid pulse anodization
相關次數: 點閱:102下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究所推廣之複合式脈衝陽極氧化(hybrid pulse anodization, HPA)技術的目的為抑制過多焦耳熱(Joule’s heat)的產生,並在相對較高的製程溫度中製備奈米多孔性陽極氧化鋁(anodic aluminum oxide, AAO)模板。大部分陽極氧化鋁製程使用兩階段直流電並且電解液溫度控制在0–5 °C,避免產生熱累積。一般脈衝陽極氧化(PA)利用高低電壓改善耐磨性和抗腐蝕性運用在阻抗型氧化鋁或者高電位陽極氧化鋁製程。HPA是一般電位加入微小的負電位,能有效降低焦耳熱累積和提升表面型態,降低一階段的工作時間。
    高升寬比的鈷、鎳-銅、鈷-銅利用電化學沉積在陽極氧化鋁模板孔洞中(孔洞大小:200nm 模厚:60μm)。使用電壓和pulese控制合金組成,由X-ray diffraction 和 EDS確認材料之成分。磁性量測顯示磁性奈米線中添加銅有助於增加垂直方向磁場之矯頑量。本研究主要在運用HPA方法製備AAO和電化學沉積磁性奈米線,推廣AAO在不同奈米技術的使用。

    Many conventional anodic aluminum oxide (AAO) templates were performed using two-step direct current anodization (DCA) at low temperature (0–5 °C) to avoid dissolution effects. Pulse anodization (PA) by switching between high and low voltages has been used to improve wear resistance and corrosion resistance in barrier type anodic oxidation of aluminum or hard anodization for current nanotechnology. However, there are only few investigations of AAO by hybrid pulse anodization (HPA) with normal-positive and small-negative voltages, especially for the one-step anodization, to shorten the working time. In this purpose, the effects of temperature and voltage modes (DCA vs. HPA) on reducing Joule’s heat.
    High aspect ratio Co, Ni-Cu, Co-Cu nanowires was electrodeposited inside ordered arrays of self-assembled pores (approximately 200 nm in diameter and approximately 60 μm in length) in anodic alumina templates. The chemical composition of the nanocables has been confirmed by X-ray diffraction and EDS. Magnetization measurements revealed that magnetic nanocable arrays with adding Cu have a plus remanence ratio in perpendicular magnetic field. Hence, we demonstrate that HPA combined with AAO and magnetic alloy nanowires.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1-1 前言 1 1-2 研究動機 4 1-3 本文架構 6 第二章 文獻回顧 7 2-1 鋁之陽極氧化 7 2-1-1 多孔型陽極氧化鋁結構 7 2-1-2 陽極氧化反應 8 2-1-3 孔洞自組裝機制 10 2-1-4 陽極氧化之化學反應 12 2-2 陽極氧化參數 15 2-2-1 陽極電位 15 2-2-2 電解液溫度 16 2-2-3 電解液種類和濃度 17 2-3 陽極處理製程 19 2-3-1 兩階段陽極氧化 19 2-3-2 脈衝陽極氧化 20 2-3-3 複合式脈衝陽極氧化 21 2-4 電化學沉積反應 25 2-4-1 磁性奈米線之沉積 26 2-4-2 合金奈米線 27 第三章 實驗方法 29 3-1 實驗流程 30 3-1-1 試片製作流程 32 3-1-2 電鑄奈米線與分析 33 3-2 實驗設備 35 3-2-1 電化學沉積系統 40 3-3 實驗原料 41 3-4 實驗步驟 43 3-4-1 陽極氧化步驟 43 3-4-2 電化學沉積步驟 44 3-4-3 實驗參數 46 3-5 觀測與分析方法 48 3-5-1 低掠角X光繞射儀 (Glancing incident angle X-ray diffraction, GIXRD) 49 3-5-2 超導量子干涉震動磁量儀(Superconducting Quantum Interference Device Vibrating Sample Magnetometer) 50 第四章 結果與討論 51 4-1 電化學拋光結果 51 4-2 複合式脈衝製程成長陽極氧化鋁 53 4-2-1 複合式脈衝與直流電對AAO的影響 53 4-2-2 利用複合式脈衝製程改善熱累積 62 4-3 直流電鑄AAO鈷奈米線的特性 68 4-4 電鑄磁性合金奈米線 74 4-4-1 鎳-銅合金奈米線 74 4-4-2 鈷-銅合金奈米線 80 第五章 結論與未來工作 86 5-1 結論 86 5-2 未來工作 88 參考文獻 89

    1.C. C. Chen and C. C. Yeh, "Large-scale catalytic synthesis of crystalline gallium nitride nanowires," Advanced Materials, vol. 12, pp. 738, 2000.
    2.F. Mafune, J. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, "Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation," Journal of Physical Chemistry B, vol. 104, pp. 8333-8337, 2000.
    3.Y. Gao, G. P. Pandey, J. Turner, C. Westgate, and B. Sammakia, "Effects of the catalyst and substrate thickness on the carbon nanotubes/nanofibers as supercapacitor electrodes," Physica Scripta, vol. 86, p. 065603, 2012.
    4.C. Zhu, H. C. Peng, J. Zeng, J. Liu, Z. Gu, and Y. Xia, "Facile synthesis of gold wavy nanowires and investigation of their growth mechanism," J Am Chem Soc, vol. 134, pp. 20234-7, 2012.
    5.Y. Gao, G. P. Pandey, J. Turner, C. R. Westgate, and B. Sammakia, "Chemical vapor-deposited carbon nanofibers on carbon fabric for supercapacitor electrode applications," Nanoscale Res Lett, vol. 7, p. 651, 2012.
    6.X.-Q. Wei, G. F. Payne, X.-W. Shi, and Y. Du, "Electrodeposition of a biopolymeric hydrogel in track-etched micropores," Soft Matter, vol. 9, p. 2131, 2013.
    7.X. Sheng, J. Liu, N. Coronel, A. M. Agarwal, J. Michel, and L. C. Kimerling, "Integration of Self-assembled porous alumina and distributed bragg reflector for light trapping in Si photovoltaic devices", IEEE Photonics Tcehnology Letters, vol. 22, pp. 1394-1396, 2010.
    8.J.-Y. Juang and D. B. Bogy, "Nanotechnology advances and applications in information storage", Microsystem Technologies, vol. 11, pp. 950-957, 2005.
    9.P. Deb, H. Kim, V. Rawat, M. Oliver, S. Kim, M. Marshall, E. Stach, and T. Sands, "Faceted and vertically aligned GaN nanorod arrays fabricated without catalysts or lithography", Nano Letters, vol. 5, pp. 1847-1851, 2005.
    10.L. Juhász and J. Mizsei, "Humidity sensor structures with thin film porous alumina for on-chip integration", Thin Solid Films, vol. 517, pp. 6198-6201, 2009.
    11.F. Li, L. Zhang, and R. M. Metzger, "On the growth of highly ordered pores in anodized aluminum oxide", Chemistry of Materials, vol. 10, pp. 2471-2480, 1998.
    12.H. Masuda and M. Satoh, "Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask", Japanese Journal of Applied Physics Part 2-Letters, vol. 35, pp. L126-L129, 1996.
    13.M. S. Sander and L.-S. Tan, "Nanoparticle arrays on surfaces fabricated using anodic alumina films as templates", Advanced Functional Materials, vol. 13, pp. 393-397, 2003.
    14.Y. Piao, H. Lim, J. Chang, W. Lee, and H. Kim, "Nanostructured materials prepared by use of ordered porous alumina membranes", Electrochimica Acta, vol. 50, pp. 2997-3013, 2005.
    15.K. Yasui, K. Nishio, and H. Masuda, "Fabrication of nanocomposites by filling nanoholes in highly ordered anodic porous alumina by vacuum deposition of metal", Japanese Journal of Applied Physics, vol. 44, pp. L1181-L1183, 2005.
    16.J.-H. Kim, S. Khanal, M. Islam, A. Khatri, and D. Choi, "Electrochemical characterization of vertical arrays of tin nanowires grown on silicon substrates as anode materials for lithium rechargeable microbatteries", Electrochemistry Communications, vol. 10, pp. 1688-1690, 2008.
    17.A. Santos, L. Vojkuvka, J. Pallarés, J. Ferré-Borrull, and L. F. Marsal, "Cobalt and nickel nanopillars on aluminium substrates by direct current electrodeposition process", Nanoscale Research Letters, vol. 4, pp. 1021-1028, 2009.
    18.H. Masuda, F. Hasegawa, and S. Ono, "Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution", Journal of The Electrochemical Society, vol. 144, pp. L127-L130, 1997.
    19.A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, "Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina", Journal of Applied Physics, vol. 84, pp. 6023-6026, 1998.
    20.H. Masuda, K. Yada, and A. Osaka, "Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution", Japanese Journal of Applied Physics, vol. 37, pp. L1340-L1342, 1998.
    21.M. A. Kashi, A. Ramazani, M. Raoufi, and A. Karimzadeh, "Self-ordering of anodic nanoporous alumina fabricated by accelerated mild anodization method", Thin Solid Films, vol. 518, pp. 6767-6772, 2010.
    22.L. Zaraska, G. D. Sulka, and M. Jaskuła, "The effect of n-alcohols on porous anodic alumina formed by self-organized two-step anodizing of aluminum in phosphoric acid", Surface and Coatings Technology, vol. 204, pp. 1729-1737, 2010.
    23.A. Saedi and M. Ghorbani, "Electrodeposition of Ni–Fe–Co alloy nanowire in modified AAO template," Materials Chemistry and Physics, vol. 91, pp. 417-423, 2005.
    24.G. E. Thompson, "Porous anodic alumina: fabrication, characterization and applications", Thin Solid Films, vol. 297, pp. 192-201, 1997.
    25.J. P. O'Sullivan and G. C. Wood, "The morphology and mechanism of formation of porous anodic films on aluminum," Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 317, pp. 511-543, 1970.
    26.I. Vrublevsky, V. Parkoun, V. Sokol, J. Schreckenbach, and G. Marx, "The study of the volume expansion of aluminum during porous oxide formation at galvanostatic regime", Applied Surface Science, vol. 222, pp. 215-225, 2004.
    27.O. Jessensky, F. Müller, and U. Gösele, "Self-organized formation of hexagonal pore arrays in anodic alumina", Applied Physics Letters vol. 72, pp. 1173-1175, 1998.
    28.S. K. Thamida and H.-C. Chang, "Nanoscale pore formation dynamics during aluminum anodization", Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 12, p. 240, 2002.
    29.Y. Li, Z. Y. Ling, S. S. Chen, and J. C. Wang, "Fabrication of novel porous anodic alumina membranes by two-step hard anodization", Nanotechnology, vol. 19, p. 225604, 2008.
    30.L. Yi, L. Zhiyuan, C. Shuoshuo, H. Xing, and H. Xinhua, "Novel AAO films and hollow nanostructures fabricated by ultra-high voltage hard anodization", Chemical Communications, vol. 46, p. 309, 2010.
    31.W. Chen, J.-S. Wu, and X.-H. Xia, "Porous anodic alumina with continously manipulated size/cell", ACS NANO, vol. 2, pp. 959-965, 2008.
    32.T. Aerts, I. De Graeve, and H. Terryn, "Control of the electrode temperature for electrochemical studies: A new approach illustrated on porous anodizing of aluminium", Electrochemistry Communications, vol. 11, pp. 2292-2295, 2009.
    33.T. Aerts, J.-B. Jorcin, I. De Graeve, and H. Terryn, "Comparison between the influence of applied electrode and electrolyte temperatures on porous anodizing of aluminium", Electrochimica Acta, vol. 55, pp. 3957-3965, 2010.
    34.G. E. Thompson and G. C. Wood, "Porous anodic film formation on aluminum", Nature, vol. 290, pp. 230-232, 1981.
    35.S. Ono, M. Saito, and H. Asoh, "Self-ordering of anodic porous alumina formed in organic acid electrolytes", Electrochimica Acta, vol. 51, pp. 827-833, 2005.
    36.S. Z. Chu, K. Wada, S. Inoue, M. Isogai, Y. Katsuta, and A. Yasumori, "Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization", Journal of The Electrochemical Society, vol. 153, pp. B384-B391, 2006.
    37.Y. F. Jia, H. H. Zhou, P. Luo, S. L. Luo, J. H. Chen, and Y. F. Kuang, "Preparation and characteristics of well-aligned macroporous films on aluminum by high voltage anodization in mixed acid", Surface & Coatings Technology, vol. 201, pp. 513-518, 2006.
    38.H. Masuda and K. Fukuda, "Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina", Science, vol. 268, pp. 1466-1468, 1995.
    39.W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz, and U. Gösele, "Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium", Nature Nanotechnology, vol. 3, pp. 234-239, 2008.
    40.D. Losic and M. Lillo, "Porous alumina with shaped pore geometries and complex pore architectures fabricated by cyclic anodization", Small, vol. 5, pp. 1392-1397, 2009.
    41.W. Lee, "The anodization of aluminum for nanotechnology applications", JOM, vol. 62, pp. 57-63, 2010.
    42.W. Lee and J.-C. Kim, "Highly ordered porous alumina with tailor-made pore structures fabricated by pulse anodization", Nanotechnology, vol. 21, p. 485304, 2010.
    43.A. J. Bard, L. R. Faulkner, "Electrochemical method," Wiley, New York, 21,1980.
    44.D. J. Sellmyer, M. Zheng, and R. Skomski, "Magnetism of Fe, Co and Ni nanowires in self-assembled arrays," Journal of Physics-Condensed Matter, vol. 13, pp. R433-R460, 2001.
    45.Y. G. Guo, L. J. Wan, C. F. Zhu, D. L. Yang, D. M. Chen, and C. L. Bai, "Ordered Ni-Cu nanowire array with enhanced coercivity," Chemistry of Materials, vol. 15, pp. 664-667, 2003.
    46.S. Gangopadhyay, G. Hadjipanayis, B. Dale, C. Sorensen, K. Klabunde, V. Papaefthymiou, et al., "Magnetic properties of ultrafine iron particles," Physical Review B, vol. 45, pp. 9778-9787, 1992.
    47.J. U. Cho, J. H. Min, S. P. Ko, J. Y. Soh, Y. K. Kim, J.-H. Wu, et al., "Effect of external magnetic field on anisotropy of Co∕Cu multilayer nanowires," Journal of Applied Physics, vol. 99, p. 08C909, 2006.
    48.R. S. Liu, S. C. Chang, S. F. Hu, and C. Y. Huang, "Highly ordered magnetic multilayer Ni/Cu nanowires," physica status solidi (c), vol. 3, pp. 1339-1342, 2006.
    49.Z. H. Yang, Z. W. Li, L. Liu, and L. B. Kong, "Microstructure and magnetic properties of Co–Cu nanowire arrays fabricated by galvanic displacement deposition," Journal of Magnetism and Magnetic Materials, vol. 323, pp. 2674-2677, 2011.
    50.陳慶峰, 鍾震桂, "溫度對電化學沈積鎳金屬膜特性之研究”, 國立成功大學機械工程研究所碩士論文, 2010.
    51.陳泰盛, 鍾震桂, “反應式共濺鍍鉭-矽-氮(Ta-Si-N)奈米複合薄膜之微結構與機械性質研究”, 國立成功大學機械工程研究所碩士論文, 2006.
    52.D.A. Skoog, F.J. Holler and S.R. Crouch, ”Principles of instrumental analysis”, Thomson, Australia, 2007.
    53.國立成功大學儀器設備中心 http://idc.ord.ncku.edu.tw/files/11-1080-8524.php.
    54.第九章 磁特性分析 - 超導量子干涉磁量儀,簡智賢 林其鋒 龔曉彤 鄭又元台灣大學 化學系
    55.A. Rauf, M. Mehmood, M. Asim Rasheed, and M. Aslam, "The effects of electropolishing on the nanochannel ordering of the porous anodic alumina prepared in oxalic acid", Journal of Solid State Electrochemistry, vol. 13, pp. 321-332, 2008.
    56.D. Ma, S. Li, and C. Liang, "Electropolishing of high-purity aluminium in perchloric acid and ethanol solutions", Corrosion Science, vol. 51, pp. 713-718, 2009.
    57.S. Ono, M. Saito, and H. Asoh, "Self-ordering of anodic porous alumina induced by local current concentration: Burning", Electrochemical and Solid-State Letters, vol. 7, p. B21, 2004.
    58.W. Lee, R. Ji, U. Gösele, and K. Nielsch, "Fast fabrication of long-range ordered porous alumina membranes by hard anodization", Nature Materials, vol. 5, pp. 741-747, 2006.
    59.S.-Z. Chu, K. Wada, S. Inoue, M. Isogai, and A. Yasumori, "Fabrication of ideally ordered nanoporous alumina films and integrated alumina nanotubule arrays by high-field anodization", Advanced Materials, vol. 17, pp. 2115-2119, 2005.
    60.L. Vojkuvka, L. F. Marsal, J. Ferr´e-Borrull, P. Formentin, and J. Pallares, "Self-ordered porous alumina membranes with large lattice constant fabricated by hard anodization", Superlattices and Microstructures, vol. 44, pp. 577-582, 2008.
    61.C.-K. Chung, M.-W. Liao, C.-T. Lee, and H.-C. Chang, "Anodization of nanoporous alumina on impurity-induced hemisphere curved surface of aluminum at room temperature," Nanoscale Research Letters, vol. 6, p. 596, 2011.
    62.C. K. Chung, W. T. Chang, M. W. Liao, H. C. Chang, and C. T. Lee, "Fabrication of enhanced anodic aluminum oxide performance at room temperatures using hybrid pulse anodization with effective cooling," Electrochimica Acta, vol. 56, pp. 6489-6497, 2011.
    63.H. Cao, L. Wang, Y. Qiu, Q. Wu, G. Wang, L. Zhang, et al., "Generation and growth mechanism of metal (Fe, Co, Ni) nanotube arrays," Chemphyschem, vol. 7, pp. 1500-4, 2006.
    64.Y. C. Wang, I. C. Leu, and M. H. Hon, "Effect of colloid characteristics on the fabrication of ZnO nanowire arrays by electrophoretic deposition", Journal of Materials Chemistry 12, pp. 2439-2444, 2002.

    下載圖示 校內:2023-01-01公開
    校外:2023-01-01公開
    QR CODE