簡易檢索 / 詳目顯示

研究生: 楊易霖
Yang, Yi-Lin
論文名稱: 適用於毫米波頻帶功率放大器陣列之數位線性化演算法
Digital Linearization Algorithm for mmWave Power Amplifier Array
指導教授: 賴癸江
Lai, Kuei-Chiang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 70
中文關鍵詞: 功率放大器陣列頻譜增生數位預失真器峰值因數削減方法間接學習架構觀測天線載波頻率偏移
外文關鍵詞: power amplifier array, spectral regrowth, digital predistortion, crest factor reduction, indirect learning architecture, observation antenna, carrier frequency offset
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著5G通訊系統的發展,訊號的傳輸頻帶已發展至毫米波頻帶。但是訊號經由毫米波頻帶傳輸時,其功率衰減非常嚴重,所以相位陣列成為5G毫米波頻帶通訊系統傳送端不可或缺的要件,以利用波束成形克服毫米波頻帶訊號功率嚴重衰減的情形。然而,相位陣列中之功率放大器具有非線性效應會造成頻譜增生,導致其他頻帶的訊號受到干擾,因此本論文根據文獻中間接學習架構發展出數位預失真演算法,補償功率放大器陣列之非線性效應。但是,由於硬體的限制,功率放大器陣列並無回授的機制將各個功率放大器之輸出訊號回授以計算預失真器係數,本論文根據文獻提出的方法,以傳送端觀察天線之接收訊號,當回授訊號以訓練預失真器係數。因為傳送端與觀察天線可能存在載波頻率不同步的現象,所以本論文參考文獻中的載波頻率偏移估計與補償的方法,使傳送端與觀察天線之載波頻率得以同步,以降低預失真係數估計的誤差與難度。本論文以工研院研發的毫米波相位陣列模組進行實測,實測結果顯示,數位預失真演算法可有效改善功率放大器陣列的線性度,而且,每個方向之頻帶外輻射均有降低。

    With the development of 5G communication systems, the millimeter-wave (mmWave) band has been widely used. However, the transmission over this band suffers from severe path losses. The phased array has become an indispensable element of the 5G mmWave systems since beamforming is typically used to overcome the path losses. However, the nonlinear effect of the power amplifier array of the phased array leads to spectral regrowth and causes interference to signals in adjacent bands. In the thesis, we develop the digital predistortion algorithm based on the indirect learning architecture in the literature to compensate for the nonlinear effect of the power amplifier array. Due to hardware limitations, the power amplifier array does not have a feedback mechanism to feed back the output signal of each power amplifier for the use of calculating the DPD coefficients. In the thesis, based on the structure proposed in the literature, we use the observation antenna (OA) that is placed in the direction of the steering angle of the array to receive the transmitted signal over the air, and use OA's output signal to arrive at the DPD coefficients. Because the OA and the transmitter may not be perfectly synchronized in frequency, the carrier frequency offset needs to be estimated and compensated before the DPD coefficients ae computed. To evaluate the effectiveness of the linearization algorithm, we use the mmWave phased array module developed by the Industrial Technology Research Institute to conduct the measurements. The experimental results show that the linearization algorithm significantly improves the linearity of the power amplifier array and reduces the out of band radiation in various directions.

    中文摘要 II Abstract III 目錄 VIII 圖目錄 X 表目錄 XIII 第一章 導論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 論文章節提要 3 第二章 研究背景 4 2.1 功率放大器 (power amplifier, PA) 4 2.1.1 PA的非線性特性與其對訊號造成之影響 4 2.1.2 頻譜增生 4 2.1.3 功率放大器之非線性特性 6 2.2 數位預失真器 7 2.2.1 線性化技術 7 2.2.2 數位預失真器之運作原理及設計 8 2.3 峰值因數削減方法 (Crest factor reduction, CFR) 9 2.3.1 峰均比(peak to average ration, PAPR)對PA功率效能之影響 9 2.3.2 CFR技術之削減與濾波 (Clipping and filtering ) [2] 11 2.4 非線性系統模型 12 2.4.1 Volterra series模型 [10] 12 2.4.2 廣義記憶多項式 (Generalized memory polynomial model) [10] 13 2.4.3 Hammerstein 模型 [10] 13 2.4.4 記憶多項式模型 (Memory polynomial model) [10] 14 第三章 間接學習架構之記憶多項式數位預失真器 15 3.1 利用間接學習架構建立數位預失真器 15 3.1.1 後失真器訓練演算法 16 3.2 值之設定 17 3.2.1 值的作用與設定 17 3.2.2 值之調整 19 第四章 數位預失真器線性化功率放大器陣列 20 4.1 功率放大器陣列(Power amplifier arrays) 20 4.1.1 PA非線性效應造成MIMO發射機之頻帶外(Out-of-band, OOB)輻射(radiation) 21 4.2 線性化演算法 22 4.2.1 等效PA陣列模型探討 22 4.2.2 數位預失真演算法 25 4.3 OFDM系統的載波頻率偏移(carrier frequency offset, CFO)[12] 26 4.3.1 造成CFO的原因與CFO造成之問題 26 4.3.2 受CFO干擾之接收訊號數學模型[12] 27 4.3.3 載波頻率偏移估計演算法及補償方式[12] 28 第五章 量測結果與分析 32 5.1 實驗參數與架構 32 5.1.1 系統參數 32 5.1.2 實驗設置與傳輸方向角定義 33 5.1.3 實驗流程 35 5.1.4 量測結果分析 43 5.1.5 頻譜分析儀量測結果之螢幕截圖 46 5.2 不同接收角度接收訊號之DPD效能 47 5.2.1 實驗場景與流程 47 5.2.2 量測結果分析 48 5.3 DPD運用於64-QAM OFDM訊號之線性化效果 51 5.3.1 實驗場景與流程 51 5.3.2 實驗結果與分析 51 5.3.3 頻譜分析儀量測結果之螢幕截圖 53 5.4 同一組DPD係數對不同的方向角之線性化效果 55 5.4.1 動機 55 5.4.2 實驗場景與流程 55 5.4.3 實驗結果 57 5.4.4 實驗結果分析 66 第六章 結論與未來研究方向 68 參考文獻 69

    [1] L. Ding, G. Tong Zhou, D. T. Morgan, Z. Ma, J. S. Kenney, J. Kim, C. R. Giardina, "A robust digital baseband predistorter constructed using memory polynomials. " IEEE Transactions on Communications, 52(1):159–165, 2004.
    [2] S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wireless Comm., vol. 12, no. 2, pp. 56–65, April 2005.
    [3]“Behavioral Modeling and Linearization of RF Power Amplifiers,” John Wood, Artech House, 2014.
    [4] S. Pipilos, Y. Papananos, N. Naskas, M. Zervakis, J. Jongsma, T. Gschier, N. Wilson, J. Gibbins, B. Carter, G. Dann, "A transmitter IC for TETRA systems based on a Cartesian feedback loop linearization technique", IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 707-718, 2005.
    [5] A. Gokceoglu, A. Ghadam, M. Valkama, "Steady-state performance analysis and step-size selection for LMS-adaptive wideband feedforward power amplifier linearizer", IEEE Trans. Signal Processing, vol. 60, no. 1, pp. 82-99, 2012.
    [6]“Behavioral Modeling and Predistortion of Wideband Wireless Transmitters”, Fadhel M. Ghannouchi, Oualid Hammi, Mohamed Helaoui, 2015
    [7] N. Srirattana, A. Raghavan, D. Heo, P. E. Allen, and J. Laskar, “Analysis and design of a high-efficiency multistage Doherty power amplifier for wireless communications,” IEEE Transactions on Microwave Theory and Techniques, 53(3):852–860, March 2005.
    [8] K. Moon, Y. Cho, J. Kim, S. Jin, B. Park, D. Kim, and B. Kim, “Investigation of Intermodulation Distortion of Envelope Tracking Power Amplifier for Linearity Improvement,” IEEE Transactions on Microwave Theory and Techniques, PP(99):1–10, 2015.
    [9]“Digital Front-End in Wireless Communications and Broadcasting: Circuits and Signal Processing,” Fa-Long Luo, Ed., Cambridge University Press, 2011.
    [10] Xiaowen Feng, “Efficient baseband digital predistortion techniques for linearizing power amplifier by taking into account nonlinear memory effect”
    [11] J. Kim and K. Konstdntinou, "Digital predistortion of wideband signals based on power amplifier model with memory." Electronics Letters, 37(23):1417–1418, 2001.
    [12] P. H. Moose, "A technique for orthogonal frequency division multiplexing frequency offset correction," in IEEE Transactions on Communications, vol. 42, no. 10, pp. 2908-2914, Oct. 1994
    [13] M. Abdelaziz, L. Anttila, A. Brihuega, F. Tufvesson and M. Valkama, "Digital Predistortion for Hybrid MIMO Transmitters," in IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 3, pp. 445-454, June 2018
    [14] C. Mollen, E. Larsson, U. Gustavsson, T. Eriksson, and R. Heath, “Outof-band radiation from large antenna arrays,” 2017. [Online]. Available:https://arxiv.org/abs/1611.01359
    [15] Y. Liu, X. Xia, Q. Zhang, W. Pan, S. Shao and Y. Tang, "Digital Predistortion Utilizing Over-the-Air Feedback for Phased Arrays," in IEEE Access, vol. 9, pp. 37064-37074, 2021
    [16] S. Lee et al., "Digital Predistortion for Power Amplifiers in Hybrid MIMO Systems with Antenna Subarrays," 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), 2015, pp. 1-5
    [17] N. Tervo, J. Aikio, T. Tuovinen, T. Rahkonen and A. Parssinen, "Digital predistortion of amplitude varying phased array utilising over-the-air combining," 2017 IEEE MTT-S International Microwave Symposium (IMS), 2017, pp. 1165-1168
    [18] M. Abdelaziz, L. Anttila and M. Valkama, "Reduced-complexity digital predistortion for massive MIMO," 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017, pp. 6478-6482

    無法下載圖示 校內:2026-07-21公開
    校外:2026-07-21公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE