| 研究生: |
陳敬文 Chen, Ching-Wen |
|---|---|
| 論文名稱: |
多面體矽氧烷寡聚物與有機分子的反應型態及產物孔洞性質 Study on the Reactions between Polyhedral Oligomeric Silsesquioxane and Organic Molecules and the Porosity of the Resultant Products |
| 指導教授: |
林榮良
Lin, Jong-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 多面體矽氧烷寡聚物 、正丙醇 、1-辛烯 、丙烯醇 、反應型態 、孔洞 、微波 、矽氫化反應 |
| 外文關鍵詞: | POSS, n-propanol, 1-octene, allyl alcohol, reaction, pore, microwave, hydrosilylation |
| 相關次數: | 點閱:108 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自從1991年Agaskar博士等人開發出高產率的多面體矽氧烷寡聚物 (Polyhedral OligomericSilsesquioxane (POSS))合成方式以來,POSS因其特殊的結構以及多變化的官能基而引起廣泛的興趣。本篇論文研究主題為POSS與帶有不同官能基的有機分子之間所發生的反應,反應機制的探討以及產物孔洞性質的測定。
我們使用三種不同的有機分子與POSS (H10Si10O15、H12Si12O18)進行反應,分別為帶有hydroxyl group的正丙醇、帶有碳-碳雙鍵的1-辛烯、同時帶有hydroxyl group及碳-碳雙鍵的丙烯醇。在常溫常壓下POSS即會與正丙醇、丙烯醇產生反應。其中正丙醇與POSS的反應性較好,我們推測醇類的OH基會親核性的攻擊POSS內帶部分正電荷的矽原子,使得其原先的Si-O-Si鍵斷裂,反應後會形成Si-OC3H7和Si-OH,2小時反應後產生Q3和Q4矽的鍵結形態,而且反應的產物中OC3H7的重量百分比低於10%。此反應產物不需經過鍛燒即有孔洞性質。丙烯醇的反應性較低,而且部分丙烯醇分子與POSS反應之後,彼此之間會藉著雙鍵偶合、氫化而連接起來,因此有機物含量較高。而且必須經過鍛燒去除有機物才能產生孔洞性質。室溫下,1-辛烯不會與POSS反應,我們嘗試利用微波促進的方式欲使1-辛烯的雙鍵與POSS的矽氫鍵產生矽氫化反應 (hydrosilylation),但是即使照射微波,反應仍然不會進行。
Since doctor Agaskar developed a high yield method on synthesis of polyhedral oligomeric silsesquioxane (POSS) in 1991, its special structure and changeable functional groups attracted widespread interest. The subject of this research focuses on the reactions between POSS and three selected organic molecules with different functional groups and on the porosity of the resultant products.
The organic molecules we use to react with POSS are n-propanol with the hydroxyl group, 1-octene with the carbon-carbon double bond, and allyl alcohol with both the hydroxyl group and the carbon-carbon double bond. POSS reacts with n-propanol and allyl alcohol at ambient conditions. N-propanol has a better reactivity with POSS. We propose that the OH groups of n-propanol molecules nucleophilically attack the Si atoms of POSS, which bear partially positive charge, forming Si-OC3H7 and Si-OH. After 2-hr reaction, Q3 and Q4 bonding types for Si atoms are produced. The wt.% of OC3H7 in the resultant products is less than 10%. This product also contains micro- and meso-pores without calcination. Allyl alcohol can also react with POSS. But interestingly the double bonds can couple between different allyl alcohol molecules. The organic content is higher after 2-hr reaction. Micro- and meso-pores are generated after calcination for the reaction product. 1-Octene does not react with POSS at ambient conditions. We attempted to use microwave-assisted method to promote the hydrosilylation reaction between the double bond of 1-octene and the Si-H bond of POSS. Unfortunately the reaction did not occur.
[1] 國立交通大學許碩麟碩士論文,側鏈含多面體矽氧烷寡聚物之聚(1,4-仲苯基乙烯)合成及其在高分子電激發光二極體上之應用,第20、21頁,民國94年1月
[2] 國立中央大學許希丞碩士論文,六面體苯矽氧烷類化合物之合成與其偶合染料之研究,第6、7頁,民國94年1月
[3] A. Provatas and J. G. Matisons, Trends in Polymer Science 5, 327, 1997.
[4] R. H. Baney, Chem. Rev. 95, 1409, 1995.
[5] R. Müller, R. Kohne and S. Sliwinski, J. Prakt. Chem. 9, 71, 1959.
[6] C. L. Frye and W. T. Collins, J. Am. Chem. Soc. 92, 5586, 1970.
[7] P. A. Agaskar, Inorg.Chem. 30, 2707, 1991.
[8] P. A. Agaskar and W. G. Klemperer, Inorg Chim Acta 229, 355, 1995.
[9] C. U. Pittman Jr., J. Inorg. Organomet. Polym. 11, 123, 2001.
[10] G. Kickelbick, Prog. Polym. Sci. 28, 83, 2003.
[11] L. Spialter and D. H. O’Brien, J. Org. Chem. 32, 222, 1966.
[12] A. Sellinger and R. M. Laine, Marcomolecules 29, 2327, 1996.
[13] A. Sellinger and R. M. Laine, Chem. Mater. 8, 1592, 1996.
[14] C. Bolln, A. Tsuchida, H. Frey and R. Mülhaupt, Chem. Mater. 9, 1475, 1997.
[15] A. Tsuchida, C. Bolln, F. G. Sernetz, H. Frey and R. Mülhaupt, Macromolecules 30, 2818, 1997.
[16] P. G.Harrison and R. Kannengiesser, Chem. Commun.3, 415, 1996.
[17] C. Zhang, F. Babonneau, C. Bonhomme, R. M. Laine, C. L. Soles and A. F.Yee, J. Am. Chem. Soc. 120, 8380, 1998.
[18] Q. Yang, R. A.van Santen, and C. Li, Angew. Chem. Int. Ed. 46, 5003, 2007.
[19] K. Beshah, J. E. Mark and J. L. Ackerman, Macromolecules 19, 2194, 1986.
[20] E. Lippmaa, M. Magi, A. Satnoson, G. Engelhardt and A. R. Grimmeric, J. Am. Chem. Soc. 102, 4889, 1980.
[21] M. Larhed, K. Olofsson and P. Appukkuttan, “Microwave methods in organic synthesis” Springer, Berlin, 2006.
[22] R. Boukherroub, A. Petit, A. Loupy, Jean-Noel Chazalviel and F. Ozanam, J. Phys. Chem. B 107, 13459, 2003.
[23] R. M. Silverstein and F. X. Webster, “Spectrometric Identification of Organic Compounds” New York , Wiley, 1998.
[24] K.S.W.Sing, D.H.Everett, R.A.W.Haul, L.Koscou, R.A.Pierotti, J.Rouque’rol and T.Siemieniewska, Appl. Chem. 57, 603, 1985.
[25] T.Mashimo, K.Nishii, T.Soma, and A.Sawaoka, Phys. Chem. Minerals 5, 367, 1980.
[26] G. Muehe and H. Graetsch, Eur. J. Mineral 4,693, 1992.
[27] B. P. Nair and C. Pavithran, Langmuir 26, 730, 2010.
[28] A. R. Bassindale and T. E. Gentle, J. Mater. Chem. 12, 1319, 1993.