研究生: |
林彥君 Lin, Yen-Chun |
---|---|
論文名稱: |
濺鍍薄膜晶粒組織型態之模擬研究 Simulation of Grain Structure Morphology for Sputtered Thin Film |
指導教授: |
黃文星
Hwang, Weng-Sing |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 模擬 、等位函數 |
外文關鍵詞: | level set method, simulation |
相關次數: | 點閱:53 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
濺鍍製程是現今許多高科技元件的關鍵技術,因此薄膜的基礎科學及相關製程技術的研發為現今學術界及產業界的重大課題。藉由電腦模擬薄膜製程,將可研究不同參數對於薄膜結構的影響與瞭解實驗中所無法觀察到的薄膜沈積型態演化過程。
本研究發展一個三維濺鍍薄膜的模擬系統,包括成核機制及成長機制兩部分的模擬。成核部分採用隨機亂數的計算方法,研究鍵結係數、捕捉半徑及臨界核大小對於成核型態的影響;在晶粒成長的部份,則採用等位函數法(Level Set Method)進行界面演化的運算,並依據濺鍍源分布型態計算表面沈積速度,以平均曲率計算晶界遷移速度。此外,本研究亦探討基板溫度、濺鍍源功率對於薄膜表面型態及晶粒型態的影響。
模擬結果顯示, 提高基板溫度,將使粒徑分布範圍減小,飽和成核密度降低,且使得薄膜晶粒的平均粒徑增大。提高濺鍍源功率則與提高基板溫度有相同的影響趨勢,但以基板溫度的影響較為顯著。在晶界遷移的模擬中,則觀察到當鄰近晶粒粒徑接近且曲率變化不大時,晶界將漸漸趨近於直線狀。
Sputter is a critical process for many high-end technology. Therefore, the fundamental basic science of sputter deposition and the related research of thin film process are the major subjects in industries and academia. With the simulation of sputter deposition, we can study how variables affect the film structures and understand the structural evolution which can’t be observed in experiments.
A three-dimensional simulation system of sputter deposition has been developed in this study. The mechanisms of nucleation and grain growth are both studied in the simulation. In nucleation stage, nucleation process is modeled using randomization method. Some nucleation variables like sticking coefficients, captured radii of clusters and critical nuclei size are considered in the simulation. In growth stage, the topographic evolution is modeled using level set methods and the deposition rate is calculated by angular distribution. The migration rate of grain boundary is calculated considering the mean curvature of grain boundary. The influences of substrate temperature and the power of sputtering source on morphology are studied, as well as that on the following morphology evolution of grain growth.
The simulation has shown the following results. Increasing substrate temperature will result in the narrower distribution of grain size, the lower density of saturated nucleation and the greater average diameter of thin film grain. The effect of increasing sputter power is similar with that of increasing substrate temperature; however, more remarkable influence of substrate temperature is observed in this study. In the simulation of grain boundary migration, we can find that when the grain size and curvature of neighbor grains are similar, the grain boundary will gradually shape into a straight line.
1. J. E. Mahan, “Physical Vapor Deposition of Thin Film”, Wiley, pp.48-50 (2000).
2. M. Ohring, “The Materials Science of Thin Films:Deposition and Structure(2nd ed.)”, CA:Academic Press, pp.35-36 (2002).
3. C. V. Thompson, “Structure Evolution During Processing of Poly - crystalline Films”, Annual Review of Materials Science, 30, pp.159-190 (2000).
4. R. P. Vinci and J. J. Vlassak, “Mechanical Behavior of Thin Films”, Annual Review of Materials Science, 26, pp.431-462 (1996).
5. H. R. Fallah, M. Ghasemi, A. Hassanzadeh and H. Steki, “The Effect of Annealing on Structural, Electrical and Optical Properties of Nano - structured ITO Films Prepared by E-beam Evaporation“, Materials Research Bulletin, 42, pp. 487-496 (2007).
6. G. H. Gilmer, M. H. Grabow and A. F. Bakker, “Modeling of Epitaxial Growth”, Material Science and Engineering B, 6, pp. 101-112(1990).
7. M. Schneider, A. Rahman and I. K. Schuller, “Role of Relaxation in Epitaxial Growth-A Molecular Dynamics Study”, Physical Review Letters, 55, pp. 604-606 (1985).
8. R. W. Smith and D. J. Srolovitz, “Void Formation During Film Growth : A Molecular Dynamics Simulation Study”, Journal of Applied Physics, 79, pp. 1448-1457 (1996).
9. L. Dong, R. W. Smith and D. J. Srolovitz, “A Two-Dimensional Dynamics Simulation of Thin Film Growth by Oblique Deposition”, Journal of Applied Physics, 80, pp. 5682-5690 (1996).
10. H. B. Mao, W. P. Jing, J. Q. Wang, J. G. Yu, L. Wang and D. Ning, “Nucleation and Growth Mechanism of GaAs Epitaxial Growth”, Thin Solid Films, 515, pp. 3624-3628 (2007).
11. Q. L. Zhang, J. L. Zhu, J. Z. Tan, G. L. Yu, J. G. Wu, J. G. Zhu and D. Q. Xiao, ”Monte Carlo Simulation of The Growth of SrTiO3 Thin Film With Molecular Source”, Vacuum, 81, pp. 539-544 (2006).
12. S. W. Levine and P. Clancy, “a Simple Model for the Growth of Polycrystalline Si Using the Kinetic Monte Carlo Simulation”, Modelling and Simulation in Materials Science and Engineering, 8, pp. 751-762 (2000).
13. L. Wang and P. Clancy, “Kinetic Monte Carlo Simulation of the Growth of Polycrystalline Cu Films”, Surface Science, 473, pp. 25-38 (2001).
14. S. P. Riege, C. V. Thompson and H. J. Frost, “Simulation of The Influence of Particles on Grain Structure Evolution in Two-Dimensional Systems and Thin Films ”, Acta Materialia, 47, pp. 1879-1887 (1999).
15. M. O. Bloomfield and T. S. Cale, “Formation and Evolution of Grain Structures in Thin Films”, Microelectronic Engineering, 76, pp. 195-204 (2004).
16. M. Stepanova and S. K. Dew, “Estimates of Differential Sputtering Yields for Deposition Applications”, Journal of Vacuum Science & Technology A, 19, pp. 2805-2816 (2001).
17. Y. Yamamura, T. Takiguchi and M. Ishid, “Energy and Angular Distribution of Sputtered Atoms at Normal Incidence”, Radiation Effects and Defects in Solids, 118, pp. 237-261 (1991).
18. S. D. Ekpe, L. W. Bezuidenhout and S. K. Dew, “Deposition Rate Model of Magnetron Sputtered Particles”, Thin Solid Films, 474, pp.330-336 (2005).
19. P. L. O’Sullivan, F. H. Baumann and G. H. Gilmer, “Continuum Model of Thin Film Deposition Incorporating Finite Atomic Length Scales”, Journal of Applied Physics, 92, pp. 1-8 (2002).
20. B. Lewis and J. C. Anderson, “Nucleation and Growth of Thin Films”, New York:Academic Press (1978).
21. 曲喜新, 過璧君, 薄膜物理, 電子工業出版社, pp. 14-26 (1994).
22. J. A. Sethian, “Level Set Methods and Fast Marching Methods:Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd ed.)”, New York:Cambridge University Press (1999).
23. J. A. Sethian, “A Fast Marching Level Set Method for Monotonically Advancing Fronts”, Proceedings of the National Academy of Sciences of the United States of America, 93, pp. 1591-1595 (1996).
24. J. A. Sethian. ”Fast Marching Methods”, Siam Review, 41, pp. 199-235 (1999).
25. G. Gottstein and L. S. Shvindlerman, ”Grain Boundary Migration in metal”, pp. 126-128 (1999).
26. S. Osher and J.A. Sethian, “Fronts Propagating with Curvature-Dependent Speed:Algorithms Based on Hamilton-Jacobi Formulations”, Journal of Computational Physics, 79, pp. 12-49 (1988).
27. V. A. Ivanov, ”On Kinetics and Thermodynamics of High Angle Grain Boundaries in Aluminum:Experimental Study on Grain Boundary Properties in Bi- and Tricrystals”, pp. 81(2006).
28. C. Eisenmenger, “Surface Evolution of Polycrystalline Al films Deposited on Amorphous Substrates at Elevated Temperatures”, Journal of Applied Physics, 89, pp. 6085-6091(2001).