| 研究生: |
呂振維 Lu, Chen-Wei |
|---|---|
| 論文名稱: |
以計算流體動力學分析水下載具流體動力係數之研究 The Research on the Hydrodynamic Coefficients of Underwater Vehicle by CFD Analysis |
| 指導教授: |
方銘川
Fang, Ming-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 水下載具 、流體動力係數 、計算流體動力學 |
| 外文關鍵詞: | underwater vehicle, hydrodynamic coefficients, CFD |
| 相關次數: | 點閱:97 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了模擬與控制載具的運動,需要求解其六自由度運動方程式,其中所涵蓋的流體動力係數最為重要,每艘不同外形的載具在運動時所承受的流體動力不同,會反映在其流體動力係數上,故流體動力係數會直接影響載具運動模擬的準確度,本文利用計算流體動力學去建立一套求解載具各項流體動力係數的方法,並使用ANSYS公司的套裝軟體FLUENT作為求解器。
本文先是探討了計算流體動力學的基礎理論並介紹計算的過程,再來說明流體動力係數的理論與求解方法,而在實際地進行載具的流體動力係數求解前,先引用前人研究的文獻來進行驗證比較,以此來證明本文使用之計算方法的可靠性;計算前亦進行網格獨立性的分析,以確定所使用的網格數量為適當,最後即進行求解本文研究之載具的各項流體動力係數,包含有三個平移運動(縱移、橫移與起伏)和三個旋轉運動(橫搖、縱搖與平擺),各個自由度的運動也涵蓋其耦合項的影響,即每個自由度運動下可分別得到三個方向的受力和三個方向的受力矩,並找出其中對載具運動具有影響力的流體動力係數,以供求解運動方程式的使用。
In order to simulate the motion of underwater vehicle, we have to solve the six DOFs equations of motions. Determining the hydrodynamic coefficients in the equations is the most important job before we can solve the equations. However, the hydrodynamic forces vary with vehicle’s outline shape and it will reflect on the hydrodynamic coefficients. In the present study, we establish the method to solve the hydrodynamic coefficients of the underwater vehicle by CFD analysis based on the existing software, i.e. the FLUENT solver.
At first, we will simply describe the related basic hydrodynamic theory and the procedure for the calculation in the present study. Then we illustrate the method to solve all related hydrodynamic coefficients. The previous researched papers by other authors are also quoted here. Adopting the existing body geometry used by other author as the calculation model, we calculate the hydrodynamic coefficients and compare the existing results to verify the validity of the present method used in this paper. In order to ascertain the appropriate number of grid generation, we also make the analysis of grid independence. Finally, the hydrodynamic coefficients of the underwater vehicle including three translational modes and three rotational modes are obtained through the calculations of the forces with respect to each mode. Through the comparisons with the existing experimental data, we found that the results obtained by the present CFD analysis technique are generally acceptable although some improvements are still needed be done in the future.
[1]ANSYS FLUENT User's Guide: ANSYS, Inc., 2010.
[2]ANSYS FLUENT User Defined Function Manual: ANSYS Inc., 2010.
[3]Amit Tyagi and D. Sen, “Calculation of transverse hydrodynamic coefficients using computational fluid dynamic approach,” Ocean Engineering, vol. 33, pp. 798-809, 2006.
[4]B.E. Launder, D.B. Spalding, “Lectures in Mathematical Models of Turbulence,” Academic Press, London, 1972.
[5]Cheng Chin and M. Lau, “Modeling and Testing of Hydrodynamic Damping Model for a Complex-shaped Remotely-operated Vehicle for Control ” J. Marine Sci. Appl. , vol. 11, pp. 150-163, 2012.
[6]D.A. Lyn, S. Einav, W. Rodi and J.H. Park, “A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder,” J. Fluid Mech., vol. 304, pp. 285-319, 1995.
[7]Eng YH, Lau WS, Low E., Seet GGL and CS Chin, “Estimation of the Hydrodynamics Coefficients of an ROV using Free Decay Pendulum Motion,” Engineering Letters, vol. 16, no. 3, 2008.
[8]F.M. Fang, C.Y. Chung, C.H. Li, “Evaluation of Wind Effect of a Square Prism by Numerical Simulation,” Journal of Architecture, vol. 71, p. 119~132, 2010.
[9]Fuyou Xu, Xuyong Ying and Zhe Zhang, “Prediction of unsteady flow around a square cylinder using RANS,” Applied Mechanics and Materials, vol. 52-54, pp. 1165-1170, 2011.
[10]H.K. Versteeg, W. Malalasekera, “An Introduction to Computational Fluid Dynamics: The Finite Volume Method,” Wiley, New York, 1995.
[11]J.P. Van Doormal, G.G. Raithby, “Enhancement of the SIMPLE method for predicting incompressible fluid flows,” Numerical Heat Transfer, vol. 7, pp. 147-163, 1984.
[12]K.Abdolmaleki, M.T.Morris-Thoas, “Simulation of The Dam Break Problem and Impact Flows Using a Navier-Stokes Solver,” 15th Australasian Fluid Mechanics Coference,Sydney,Australia13-17., 2004.
[13]Naveed Raza, Imran Mehmood, Hafiz Rafiuddin and Mohammad Rafique, “Numerical Simulation of Added Mass Determination of Standard Ellipsoids ” Proceedings of 2012 9th International Bhurban Conference on Applied Sciences & Technology 2012.
[14]Richard P Irwin , Dr Christian Chauvet, “Quantifying Hydrodynamic Coefficients of Complex Structures,” Proceedings of OCEANS , Aberdeen, UK, 18-21 June, pp. 1-5, 2007.
[15]S.V.Patanker and D.B.Spalding, “A calculation processure for heat, mass and momentum transfer in three-dimensional parabolic flows,” Int J Heat Mass Transfer, vol. 15, pp. 1787-1806, 1972.
[16]Sulin Tang, Tamaki Ura, Takeshi Nakatani, Blair Thornton, Tao Jiang, “Estimation of the hydrodynamic coefficients of the complex-shaped autonomous underwater vehicle TUNA-SAND,” Journal of Marine Science and Technology, vol. 14, pp. 373-386, 2009.
[17]Yasuhisa Hashizume, “Planar Motion Mechanism,” West Japan Fluid Engineering Laboratory Co.,Ltd., 2004.
[18]王福軍, 計算流體動力學分析-CFD軟件原理與應用. 北京: 清華大學出版社, 2004.
[19]於睦程, “應用模糊控制於自主型水下載具之避碰操控,” 國立成功大學系統及船舶機電工程學系碩士論文, 民國一百年六月.
[20]侯章祥, 臍帶電纜及洋流對潛航器運動之影響, 國立成功大學系統及船舶機電工程學系碩士論文, 民國九十四年六月.