| 研究生: |
詹晉嘉 Zhan, Jin-Jia |
|---|---|
| 論文名稱: |
邊界元素法分析疊層複合材料之層間應力與其視窗化軟體設計 Boundary Element Analysis for Interlaminar Stresses of Laminated Composites and Its Design of Window-based Software |
| 指導教授: |
夏育群
Shiah, Yu-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 邊界元素法 、近似奇異積分弱化 、層間應力 、域的映射 、視窗化軟體 |
| 外文關鍵詞: | Boundary Element Method (BEM), Nearly singular integrals, Interlaminar stresses, Domain mapping, Window-based Software |
| 相關次數: | 點閱:37 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討薄層複合材料層間應力分析的挑戰,並提出了有效的解決方案。所有的薄層和膠合層均以異向的特性並使用較粗糙的網格進行建模,由於薄層厚度的原因會出現近似奇異的積分,這導致積分的數值計算存在困難。為了解決這一問題,本研究採用了一種映射技術,將局部固有座標的正方形域映射到單位圓上,以在極座標系統下進行積分,有效減弱了積分函數的奇異性。此外,針對處理薄層元素的積分,我們採用了分區策略,將其分為三種不同情況進行奇異積分的計算。隨後,我們整合了使用Visual Basic (VB)設計的使用者介面進行材料參數設定、網格劃分和邊界條件的設置,使整個分析過程更加自動化。最終,我們提出了四個不同範例進行討論,這些範例涵蓋了不同材料和邊界條件,以確保所提出的方法能夠在多種情況下進行精確分析。
This thesis addresses the challenges of interlaminar stress analysis in thin-layer composite materials and presents effective solutions. All thin layers and adhesive layers are modeled with anisotropic properties using coarse meshes. Due to the thinness of these layers, nearly singular integrals arise, leading to difficulties in numerical integration. To overcome this issue, a mapping technique is employed in this study, transforming the square domain of local intrinsic coordinates onto a unit circle, allowing for integration in polar coordinates and effectively mitigating the singularity of the integral functions. Additionally, for handling the integration of thin-layer elements, a partitioning strategy is adopted, categorizing the singular integrals into three different cases for computation. Furthermore, we have integrated a Visual Basic (VB) designed user interface to facilitate the setting of material parameters, mesh generation, and boundary conditions, thereby automating the entire analysis process. Finally, four different examples are discussed, covering various materials and boundary conditions, to ensure that the proposed method can perform accurate analysis in diverse scenarios.
[1] M'Saoubi, R ; Axinte, D ; Soo, SL ; Nobel, C ; Attia, H ; Kappmeyer, G ; Engin, S ; Sim, WM. High performance cutting of advanced aerospace alloys and composite materials. 2015
[2] Friedrich, K and Almajid, AA. Manufacturing Aspects of Advanced Polymer Composites for Automotive Applications 20 (2) Apr 2013; pp.107-128.
[3] Hiremath, N; Young, S; Ghossein, H; Penumadu, D ; Vaidya, U; Theodore, M. Low cost textile-grade carbon-fiber epoxy composites for automotive and wind energy applications. Oct 1 2020
[4] Pastuszak, PD and Muc, A. Application of Composite Materials in Modern Constructions. 2013; 542, pp.119-129.
[5] Clyne, T.W.; Hull, D. An Introduction to Composite Materials, 3rd ed.; Cambridge University Press: Cambridge, UK, 2019.
[6] Zagho, M.M.; Hussein, E.A.; Elzatahry, A.A. Recent overviews in functional polymer composites for biomedical applications. Polymers 2018, 10, 739.
[7] Monteiro, S.N.; de Assis, F.S.; Ferreira, C.L.; Simonassi, N.T.; Weber, R.P.; Oliveira, M.S.; Colorado, H.A.; Pereira, A.C. Fique fabric: A promising reinforcement for polymer composites. Polymers 10 (2018); 246.
[8] Movahedi, N.; Linul, E. Quasi-static compressive behavior of the ex-situ aluminum-alloy foam-filled tubes under elevated temperature conditions. Mater. Lett., 206 (2017); 182–184.
[9] G. Davi`, A. Milazzo, Boundary Element Solution for Free Edge Stresses in Composite Laminates, J. Appl. Mech. Dec 1997, 64(4): 877-884.
[10] Y.C. Shiah, Kuo-Wei Hsu, Two-dimensional analysis of interlaminar stresses in thin anisotropic composites subjected to inertial loads by regularized boundary integral equation, Composites Part B-Engineering 159 (2019); 105-113.
[11] C.L. Tan, Y.C. Shiah, C.Y. Wang, Boundary Element Elastic Stress Analysis of 3D Generally Anisotropic Solids Using Fundamental Solutions Based on Fourier Series, International Journal of Solids and Structures 50 (2013); 2701-2711.
[12] Scuderi Letizia, On the computation of nearly singular integrals in 3D BEM collocation, Internat J Numer Methods Engrg 2007; 74: 1733-1770.
[13] H. Ma, N. Kamiya, A general algorithm for the numerical evaluation of nearly singular boundary integrals of various orders for two- and three-dimensional elasticity, Computational Mechanics 2002; 29: 277–288.
[14] H. Ma, N. Kamiya, Distance transformation for the numerical evaluation of near singular boundary integrals with various kernels in boundary element method, Eng. Anal. Bound. Elem. 2002; 26: 329–339.
[15] Xianyun Qin, Jianming Zhang, Guizhong Xie, Fenglin Zhou, Guanyao Li, A general algorithm for the numerical evaluation of nearly singular integrals on 3D boundary element, J Comput Anal Appl 2011; 235(14): 4174-4186.
[16] J.C.F. Telles, A self-adaptive co-ordinates transformation for efficient numerical evaluation of general boundary element integrals, Internat. J. Numer. Methods Engrg. 24 (1987) 959–973.
[17] X.L. Chen, Y.J. Liu, An advanced 3-D boundary element method for characterizations of composite materials, Eng. Anal. Bound. Elem. 29 (2005) 513–523.
[18] K. Hayami, Variable transformations for nearly singular integrals in the boundary element method, Publ. Res. Inst. Math. Sci. 41 (2005) 821–842.
[19] B.M. Johnston, P.R. Johnston, D. Elliott, A sinh transformation for evaluating two-dimensional nearly singular boundary element integrals, Internat. J. Numer. Methods Engrg. 69 (2007) 1460–1479.
[20] P.R. Johnston, Application of sigmoidal transformation to weakly singular and nearly-singular boundary element integrals, Internat. J. Numer. Methods Engrg. 45 (1999) 1333–1348.
[21] S. Wu, On the evaluation of nearly singular kernel integrals in boundary element analysis, Numer. method Eng. 11 (1995) 331–337.
[22] Y.C. Shiah, Kuo-Wei Hsu, Two-dimensional analysis of interlaminar stresses in thin anisotropic composites subjected to inertial loads by regularized boundary integral equation, Composites Part B-Engineering (2019); 159: 105-113.
[23] Y.C. Shiah and M.R. Hematiyan, Interlaminar stresses analysis of three-dimensional composite laminates by the boundary element method, Journal of Mechanics (2018); 34(6): 829-837.
[24] He, M.G and Tan, C.L., A Self-Regularization Technique in Boundary Element Method for 3-D Stress Analysis, CMES-Computer Modeling In Engineering & Sciences, 95, pp. 317-349, 2013.
[25] Y.C. Shiah and M.R. Hematiyan, Interlaminar stresses analysis of three-dimensional composite laminates by the boundary element method, Journal of Mechanics, Vol.34, No.6, pp 829-837, 2018.
[26] Y.C. Shiah, Yue-Fang Hsiao, Mohammad-Rahim Hematiyan, Efficient modeling of heat conduction in multiply bonded composites covered with thermal barrier coating, Engineering Analysis with Boundary Element Method, Volume 164, July 2024.
[27] Lifshitz, I.M. and Rozenzweig, L.N., Construction of the Green Tensor for the Fundamental Equation of Elasticity Theory in the Case of Unbounded Elastically Anisotropic Medium, Zhurnal Eksperimental noi I Teioretical Fiziki, 17, pp. 783-791 (1947).
[28] C.L. Tan, Y.C. Shiah, C.Y. Wang, Boundary Element Elastic Stress Analysis of 3D Generally Anisotropic Solids Using Fundamental Solutions Based on Fourier Series, International Journal of Solids and Structures, Vol.50, pp.2701-2711, 2013.
[29] Y.C. Shiah, Analytical Transformation of the Volume Integral for the BEM Treating 3D Anisotropic Elastostatics Involving Body Force, Computer Methods in Applied Mechanics and Engineering 278, pp 404-422, 15, 2014.
[30] Y.C. Shiah, Analysis of Thermoelastic Stress-Concentration around Oblate Cavities in Three-Dimensional Generally Anisotropic Bodies by the Boundary Element Method, International Journal of Solids and Structures 81, pp.350-360, 2016.
[31] Y.C. Shiah, Nguyen Anh Tuan, M.R. Hematiyan, Direct transformation of the volume integral in the boundary integral equation for treating three-dimensional steady-state anisotropic thermoelasticity involving volume heat source, International Journal of Solids and Structures 143, 287-297, June 15, 2018.
[32] Ting, T.C.T. and Lee, V.G., The Three-Dimensional Elastostatic Green’s Function for General Anisotropic Linear Elastic Solid, The Quarterly Journal of Mechanics and Applied Mathematics, 50, pp. 407-426 (1997).
[33] Shiah, Y.C.,Tan,C.L.,& Chan,L.D. (2015). Boundary Element Analysis of Thin Anisotropic Structures by a Self-regularization Scheme. CMES: Computer Modeling in Engineering & Sciences, 109(1), 15-33.