簡易檢索 / 詳目顯示

研究生: 王文賢
Wang, Wen-Hsien
論文名稱: 新型彩色金屬誘發多晶矽薄膜與網印多晶矽太陽能電池之研究
Studies of Novel Color MIC Poly-Si Thin Film and Paste Screen Printing Poly-Si Solar Cells for BIPV Applications
指導教授: 方炎坤
Fang, Yean-Kuen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 77
中文關鍵詞: 彩色太陽能電池金屬誘發多晶
外文關鍵詞: color, solar cell, MIC
相關次數: 點閱:81下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用添加各種顏色有機及無機螢光層研製新型彩色金屬誘發多晶矽薄膜與網印多晶矽太陽能電池。有機螢光層,我們蒸鍍Alq3(黃)、CuPC(藍)、Rubrene (紅),無機方面則利用旋轉塗佈橘紅色氮化物稀土化合物(Sr2Si5N8-XOX:Eu)螢光粉及黃綠色釔鋁石榴石稀土化合物((Y1-xTbx)2.97Ce0.03Al5O12)螢光粉。
    在彩色薄膜太陽電池的研究,吾人使用溅鍍沈積氧化鋅摻雜鋁(ZnO:Al)薄膜於已沈積有銦錫氧化物(ITO)的玻璃基板上,並以0.3%(volume ratio)的鹽酸液蝕刻成粗糙化的表面。然後,以PECVD系統在基板溫度250oC下沈積晶粒為0.5-1µm的低溫多晶矽薄膜,最後添加螢光層改變其外觀顏色。在網印多晶矽太陽電池方面,首先在P型矽基作磷擴散形成p/n介面,再利用網版印刷銀漿高溫燒結做金屬電極,最後添加螢光層改變其外觀顏色。
    吾人並以FE-SEM、XRD、UV/Visible spectrophotometer等儀器來分析薄膜結構,及利用Solar Simulator量測Isc、Voc、Fill Factor、efficiency等參數。
    實驗顯示,添加Alq3、CuPC及Rubrene在薄膜/網印太陽電池可分別增加5%/11%、4%/3%、13%/20%的轉換效率。但添加無機橘紅色者,在薄膜/網印太陽電池則減少74%/60%的轉換效率。添加無機黃綠色者,在薄膜/網印太陽電池則減少60%/57%的轉換效率。
    添加螢光層的紅色多晶矽薄膜及網版印刷多晶矽太陽電池,經由標準光源AM1.5照射後所量測出來最佳特性為,開路電壓=0.40V及 0.41V、短路電流= 2.33mA及32.94mA、填充因子= 0.47及0.52、與轉換效率=1.75%及6.98%。

    In this thesis, we study to develop color MIC poly-Si thin film and the paste screen printing polycrystalline silicon solar cells for building-integrated photovoltaic (BIPV) applications. Various color organic and inorganic fluorescent materials are deposited on the top of the cell as the anti-reflective coating (ARC). Besides, the ARC is used as the decorative layer to manipulate surface color of the solar cell. We use Alq3, CuPC and Rubrene as the organic decorative layer for yellow, blue and red colors, respectively, while spin coating Sr2Si5N8-XOX:Eu and (Y1-xTbx)2.97Ce0.03Al5O12 as inorganic decorative layers for orange-red and yellow-green colors.
    For preparation of the color thin film solar cell, we sputtered an AZO thin film on the ITO glass substrate firstly. Next, the AZO film was etched with 0.3% (volume ratio) HCL solution to form a textural surface, and then deposited the a-Si film on top of the AZO under 250 oC by a PECVD system. During the deposition, the amorphous structure is also auto-transformed to a poly one. On the other hand, the paste screen printing polycrystalline silicon solar cell was prepared by forming the n+ emitter on the p type poly base and use of screen printing and sintering silver paste for the grid metal electrodes. Furthermore, FE-SEM, XRD, UV/Visible spectrophotometer were applied to analyze the thin film characteristics and used solar simulator to measure Isc, Voc, Fill Factor and efficiency.
    Experimental results show adding the Alq3, CuPC and Rubrene on the thin film cell / screen printing cell can respectively promote the efficiency of 5%/11%, 4%/3% and 13%/20%. But adding inorganic, the efficiency are reduced 74%/60% and 60%/57% for the Sr2Si5N8-XOX: Eu and the (Y1-xTbx)2.97Ce0.03Al5O12 inorganic fluorescent layers, respectively.
    In this study, under AM1.5 sun power irradiation , the red color thin film /the screen printing solar cells have the best performance of 0.40V / 0.41V, 2.33mA / 32.94 mA, 0.47 /0.52, and 1.75% / 6.98% for Voc, Isc , Fill Factor , and efficiency, respectively.

    目錄 中文摘要 I 英文摘要 III 誌謝 V 目錄 VI 圖表目錄 VIII 第一章 導論 1 1-1 前言 1 1-2 研究動機 2 1-3 螢光材料介紹 3 1-3-1 螢光材料的應用 3 1-3-2 光致發光原理 4 1-4 論文架構 6 第二章 太陽能電池簡介 7 2-1 太陽電池種類 7 2-2 太陽電池的原理 8 2-3 太陽光譜 9 2-4 太陽電池之等效電路 10 2-5 太陽電池效率之參數 12 2-6 影響太陽電池效率之因素 15 第三章 成長系統與量測儀器介紹 16 3-1 成長儀器系統 16 3-1-1 電漿助長化學氣相沈積系統(PECVD) 16 3-1-2 真空熱蒸著系統(Thermal Vacuum Evaporation System) 17 3-1-3 射頻磁控濺鍍系統(Radio-Frequency Sputtering System) 18 3-1-4 旋轉塗佈機 (Spin coater) 20 3-2 量測儀器及原理簡介 21 3-2-1 掃描式電子顯微鏡 (FE-SEM) 21 3-2-2 原子力顯微鏡 (AFM) 21 3-2-3 X光繞射儀 (X-ray Diffraction, XRD) 22 3-2-4 拉曼光譜儀 (Raman) 22 3-2-5 α-step 22 3-2-6 光譜儀 (Spectra Pro-500) 23 3-2-7 Solar Simulation 24 3-3 實驗材料 25 第四章 新型金屬誘發多晶矽薄膜與網版印刷多晶矽太陽電池之製作與分析 26 4-1 新型金屬誘發多晶矽薄膜太陽電池[15] 26 4-1-1 傳統金屬誘發結晶原理 26 4-1-2 新型金屬誘發結晶原理 26 4-1-3 新型金屬誘發多晶矽薄膜成長步驟 27 4-1-4 薄膜成份分析 28 4-1-5 AZO層分析 28 4-1-6 薄膜表面分析 29 4-1-7 XRD繞射圖對新型金屬誘發多晶矽薄膜分析 30 4-1-8 新型金屬誘發多晶矽太陽能元件與其I-V效率特性 30 4-2 網版印刷多晶矽太陽電池 31 4-2-1 網版印刷多晶矽太陽電池製作流程(如圖4-14) 31 4-2-2 網版印刷多晶矽太陽電池I-V效率特性 31 第五章 添加螢光層對多晶矽太陽能電池影響研究 32 5-1 有機螢光層對多晶矽太陽電池的影響 32 5-1-1 有機螢光層對薄膜太陽電池影響 32 5-1-2 有機螢光層對網印多晶矽太陽電池影響 32 5-1-3 有機螢光層影響分析 33 5-2 無機螢光層對多晶矽太陽電池的影響 34 5-2-1 無機螢光層對薄膜太陽電池影響 34 5-2-2 無機螢光層對網印多晶矽太陽電池影響 34 5-2-3 無機螢光層影響分析 35 第六章 結論與未來展望 36 6-1 結論 36 6-2 未來展望 37 參考文獻 38 圖表目錄 表2-1 不同空氣質量( Air Mass, AM )定義之太陽光輻射對照單位面積入射功率 43 圖1-1 螢光產品 44 圖1-2 螢光及磷光機制能階圖 45 圖2-1 太陽能電池分類圖 46 圖2-2 太陽能電池等效電路圖 47 圖2-3 太陽能電池之電壓-電流特性圖 47 圖3-1 PECVD成長系統圖 48 圖3-2 真空熱蒸著系統圖 49 圖3-3 射頻磁控濺鍍系統圖 50 圖3-4 旋轉塗佈示意圖 51 圖3-5 Alq3 (C27H18AlN3O3) 52 圖3-6 CuPC (C32H16N8Cu) 52 圖3-7 Rubrene 52 圖4-1 金屬誘發成長(MIC) 53 圖4-2 金屬誘發橫向結(MILC) 53 圖4-3 新型金屬誘發多晶矽薄膜之EDS圖 54 圖4-4 AZO沈積在ITO玻璃基板上之截面圖 55 圖4-5 AZO沈積在ITO玻璃基板上之截面圖(HCL蝕刻後) 55 圖4-6 AZO沈積在ITO玻璃基板上 56 圖4-7 AZO沈積在ITO玻璃基板上(HCL蝕刻後) 56 圖4-8 非晶矽之SEM圖 57 圖4-9 傳統金屬結晶誘發多晶矽之SEM圖 57 圖4-10 新型金屬結晶誘發多晶矽之SEM圖 58 圖4-11 新型金屬誘發多晶矽薄膜與非晶矽薄膜之XRD圖 58 圖4-12 元件結構圖 59 圖4-13 新型金屬誘發多晶矽薄膜太陽電池之效率圖 60 圖4-14 網版印刷多晶矽太陽電池製作流程圖 61 圖4-15 網印多晶矽太陽電池結構圖 62 圖4-16 網印多晶矽太陽電池截面圖 62 圖4-17 網印多晶矽太陽電池之效率圖 63 圖5-1 薄膜太陽電池之照片 64 圖5-2 蒸鍍Alq3於薄膜太陽電池上 64 圖5-3 蒸鍍CuPC於薄膜太陽電池上 64 圖5-4 蒸鍍Rubrene於薄膜太陽電池上 64 圖5-5 薄膜太陽電池之效率圖 65 圖5-7 蒸鍍CuPC於薄膜太陽電池上之效率圖 66 圖5-8 蒸鍍Rubrene於薄膜太陽電池上之效率圖 66 圖5-9 蒸鍍有機螢光層於薄膜太陽電池上之反射率分析 67 圖5-10 網印多晶矽太陽電池 68 圖5-11 蒸鍍Alq3於網太陽電池上 68 圖5-12 蒸鍍CuPC於網印太陽電池上 68 圖5-13 蒸鍍Rubrene於網印太陽電池上 68 圖5-14 網印多晶矽太陽電池之效率圖 69 圖5-15 蒸鍍Alq3於網印太陽電池上之效率圖 69 圖5-16 蒸鍍CuPC於網印太陽電池上之效率圖 70 圖5-17 蒸鍍Rubrene於網印太陽電池上之效率圖 70 圖5-18 蒸鍍有機螢光層於網印太陽電池上之反射率分析 71 圖5-19 塗佈橘紅色螢光膠於薄膜太陽電池上 72 圖5-20 塗佈黃綠色螢光膠於薄膜太陽電池上 72 圖5-21 塗佈紅橘色螢光膠於薄膜太陽電池上之效率圖 73 圖5-22 塗佈黃綠色螢光膠於薄膜太陽電池上之效率圖 73 圖5-23 塗佈無機螢光層於薄膜太陽電池上之反射率分析 74 圖5-24 塗佈橘紅色螢光膠於網印太陽電池上 75 圖5-25 塗佈黃綠色螢光膠於網印太陽電池上 75 圖5-26 塗佈橘紅色螢光膠於網印太陽電池上之效率圖 76 圖5-27 塗佈黃綠色螢光膠於網印太陽電池上之效率圖 76 圖5-28 塗佈無機螢光層於網印太陽電池上之反射率分析 77

    參考文獻

    [1] G. Blasse, B.C. Grabmaier, “Luminescent materials”, Springer Verlag, Berlin Heidelberg, Germany(1994).
    [2] Shigeo Shionoya, William M. Yen, “Phosphor handbook”, CRC Press LLC, New York, USA(1998).
    [3] P. Atkins, D. de Paula, “Physical Chemistry”, Oxford university press, 7th Edition, 1997.
    [4] 林明獻編著, “太陽電池 技術入門”, 全華圖書股份有限公司, 台灣(2008).
    [5] Donald A. Neamen, “Semiconductor Physics and Devices”, McGraw-Hill, New York 1997.
    [6] A. Shah, P. Torres, R. Tscharner, N. Wyrsch. and H. Keppner, “The Case for Thin-Film Solar Cell”, Science, Vol. 285, 30 July 1999.
    [7] P. Thekackra, “The Solar Cell Constant and Solar Spectrum Measurement from a Research Aircraft”, NASA Technical Report.
    [8] H. F. Sterling and R. C. G. Swann, “Chemical vapour deposition promoted by r.f. discharge,” Solid-State Electronics, Volume 8, Issue 8, pp. 653, August 1965.
    [9] P. Roca i Cabarrocas, ”Plasma enhanced chemical vapor deposition of amorphous, polymorphous and microcrystalline silicon films”, Journal of Non-Crystalline Solids 266-269 31-37 (2000).
    [10] R.C. Chittick, J.H. Alexander, and H.F. Sterling, “The Preparation and Properties of Amorphous Silicon,” Journal of The Electrochemical Society, vol. 116, pp. 77-81, Jan. 1969.
    [11] W.E. Spear and P.L. Comber, “Electronic properties of substitutionally doped amorphous Si and Ge,” Philosophical Magazine, vol. 33, p. 935, 1976.
    [12] W. E. Spear, P. G. LeComber, S. Kinmond, M. H. Brodsky, “Amorphous Si p-n Junction,” Applied Physics Letters, Vol. 28, no. 2, pp. 105, Jan. 1976.
    [13] X. L. Jiang, Y. L. He, H. L. Zhu, “The effect of passivation of boron dopants by hydrogen in nano-crystalline and micro-crystalline silicon films”, J. Phys.: Condens. Matter 6 713-718,1996.
    [14] 林季尚, 方炎坤, “熱鎢絲化學氣相低溫沈積奈米矽晶薄膜及薄膜電晶體的研究”, 國立成功大學電機工程學系碩士論文, 民國95年6月
    [15] 鍾永傑, 方炎坤, “新型金屬誘發玻璃基板上成長低溫多晶矽薄膜技術應用於太陽電池的研究”, 國立成功大學電機工程學系碩士論文, 民國99年6月
    [16] K. Lee, Y. Fang, and S. Fan, “Au metal-induced lateral crystallisation (MILC) of hydrogenated amorphous silicon thin film with very low annealing temperature and fast MILC rate,” Electronics Letters, vol. 35, pp. 1108-1109, Jun. 1999.
    [17] O. Nast, T. Puzzer, L.M. Koschier, A.B. Sproul, and S.R. Wenham, “Aluminum-induced crystallization of amorphous silicon on glass substrates above and below the eutectic temperature,” Applied Physics Letters, vol. 73, p. 3214, 1998.
    [18] S.Y. Yoon, K.H. Kim, C.O. Kim, J.Y. Oh, and J. Jang, “Low temperature metal induced crystallization of amorphous silicon using a Ni solution,” Journal of Applied Physics, vol. 82, p. 5865, 1997.
    [19] S.Y. Yoon, S.J. Park, K.H. Kim, and J. Jang, “Metal-induced crystallization of amorphous silicon,” Thin Solid Films, vol. 383, pp. 34-38, Feb. 2001.
    [20] 范盛宏, 方炎坤, “金誘發非晶矽薄膜橫向結晶層之研製及特性分析”, 國立成功大學電機工程學系碩士論文, 1999
    [21] R. Banerjee, S. Ray, N. Basu, A.K. Batabyal, and A.K. Barua, “Degradation of tin-doped indium-oxide film in hydrogen and argon plasma,” Journal of Applied Physics, vol. 62, p. 912, 1987.
    [22] B. Drevillon, S. Kumar, P. Roca i Cabarrocas, and J.M. Siefert, “In situ investigation of the optoelectronic properties of transparent conducting oxide/amorphous silicon interfaces,” Applied Physics Letters, vol. 54, p. 2088, 1989.
    [23] R.W. Olesinski, N. Kanani, and G.J. Abbaschian, “The In- Si (Indium-Silicon) system,” Journal of Phase Equilibria, vol. 6, pp. 128–130, 1985.
    [24] Massalski T B 1990 Binary Alloy Phase Diagrams 2nd edn (Metals Park, OH: American Society for Metals).
    [25] 林明憲編著, “太陽電池技術入門”, 全華科技圖書股份有限公司, 台灣(2007)
    [26] O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, and H.W. Schock, “Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells,” Thin Solid Films, vol. 351, pp. 247-253, Aug. 1999.
    [27] H. Sato, T. Minami, Y. Tamura, S. Takata, T. Mouri, and N. Ogawa, “Aluminium content dependence of milky transparent conducting ZnO:Al films with textured surface prepared by d.c. magnetron sputtering,” Thin Solid Films, vol. 246, pp. 86-91, Jun. 1994.

    下載圖示 校內:2016-08-03公開
    校外:2016-08-03公開
    QR CODE