簡易檢索 / 詳目顯示

研究生: 姚蕙雯
Yao, Hui-Wen
論文名稱: 探討宿主細胞因子Egr-1與beta-amyloid促進單純疱疹病毒第一型的感染之機制
Host Cellular Factors Egr-1 and Beta-amyloid Increase Herpes Simplex Virus Type 1 infection
指導教授: 陳舜華
Chen, Shun-Hua
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 64
中文關鍵詞: 單純疱疹病毒轉錄因子失明性角膜炎乙型類澱粉蛋白疱疹病毒性腦炎
外文關鍵詞: herpes simplex virus, Egr-1, herpetic stromal keratitis, β-amyloid, herpes simplex encephalitis
相關次數: 點閱:104下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單純疱疹病毒感染角膜並進行複製時可引發血管新生及慢性發炎反應,進而造成臨床上最常導致視覺障礙的失明性角膜炎。由於病毒須仰賴宿主細胞供給資源以完成病毒本身的複製,因此宿主細胞因子可能參與病毒感染所誘發的疾病;然而其中參與的細胞因子種類,以及細胞因子在致病機轉中的可能作用機制仍不十分清楚。在我們的研究中發現單純疱疹病毒感染可以增加細胞轉錄因子Egr-1在小鼠眼角膜的表現。這些增加的Egr-1蛋白會促進病毒的複製與血管新生因子的表現,進而造成角膜的組織病變與血管新生。此外我們也發現不管是先天缺乏Egr-1蛋白的Egr-1基因缺陷鼠,或是使用Egr-1-specific DNAzyme抑制野生型小鼠角膜的Egr-1蛋白表現時,這些缺少Egr-1表現的小鼠,在被病毒感染後,其角膜組織的病變程度有顯著降低,同時組織中的病毒量與促血管新生因子的表現量都有顯著減少。我們結果顯示內生性的Egr-1蛋白會惡化疱疹病毒引起的失明性角膜炎,而抑制Egr-1蛋白的表現,則可以改善單純疱疹病毒感染所造成的失明性角膜炎。
    單純疱疹病毒除了在周邊組織造成病變之外,也因為具有侵犯神經組織,並建立終生潛伏感染的能力,而成為人類健康的一大威脅。疱疹病毒性腦炎是單純疱疹病毒感染中樞神經系統所引發的致命疾病,但是目前為止疱疹病毒性腦炎的致病機制還不清楚。在本篇研究中我們發現,乙型類澱粉蛋白基因轉殖鼠在被單純疱疹病毒感染後,其死亡率有明顯的增加,同時也可在腦部偵測到大量的病毒存在。基因轉殖鼠腦部大量的病毒,可能是因為乙型類澱粉蛋白與病毒顆粒作用,增加病毒附著於細胞表面的數目,進而促進病毒的感染。我們的研究結果不僅發現乙型類澱粉蛋白可以幫助單純疱疹病毒感染細胞,同時也促進我們對疱疹病毒性腦炎致病機轉的認識。

    Herpes simplex virus type 1 replication initiates angiogenesis and inflammation in the cornea. This can result in herpetic stromal keratitis (HSK), which is a leading cause of infection-induced corneal blindness. Host cellular factors mediate the progression of HSK, but little is known about these cellular factors and their mechanisms of action. We show here that the expression of the cellular transcription factor early growth response 1 (Egr-1) in HSV-1-infected mouse corneas was enhanced. Enhanced Egr-1 expression aggravated HSK by increasing viral replication and subsequent neovascularization with high levels of potent angiogenic factors, fibroblast growth factor 2 and vascular endothelial growth factor. Furthermore, Egr-1 deficiency due to a targeted disruption of the gene or knockdown of Egr-1 expression topically using a DNA-based enzyme significantly reduced HSK by decreasing both viral replication and the angiogenic response. The present study provides the first evidence that endogenous Egr-1 aggravates HSK and that blocking Egr-1 reduces corneal damage.
    HSV-1 with its ability to invade neurons and establish life-long latent infection in infected hosts becomes a threat to our health. The most devastating disease caused by HSV-1 infection is herpes simplex encephalitis, although the pathogenesis remains unclear. We show here that transgenic mice with increased β-amyloid (Aβ) expression in the brain were susceptible to HSV-1-induced lethality and contained high viral loads in the brain. The increased viral loads were resulted from Aβ-mediated enhancement on virus binding to host cells through the interaction of Aβ and virus. Our present study indicates that Aβ acts as an entry enhancer of HSV-1 infection and also enhances our understanding of HSV-1-induced encephalitis.

    中文摘要................................................. I ABSTRACT...............................................II ACKNOWLEDGEMENTS.......................................III CONTENTS...............................................IV FIGURE LIST............................................V INTRODUCTION...........................................1 MATERIALS AND METHODS..................................7 RESULTS................................................14 Suppression of Transcription Factor Early Growth Response 1 Reduces Herpes Simplex Virus 1-induced Corneal Disease in Mice......................................14 Aβ40 Increases Herpes Simplex Virus Lethality in mice.................................................20 DISCUSSION.............................................25 CONCLUSION.............................................31 FIGURES................................................32 REFERENCES.............................................56 CURRICULUM VITAE.......................................63

    1. Roizman, B., Knipe, D.M., &Whitley, R.J. Herpes simplex viruses. in Fields Virology, Vol. 2 (eds. Howley,P.M. & Knipe, D.M.) 2501-2601 (Lippincott Williams & Wilkins, Philadelphia, PA, 2007).
    2. Wentworth, B.B. & Alexander, E.R. Seroepidemiology of infectious due to members of the herpesvirus group. Am. J. Epidemiol. 94, 496-507 (1971).
    3. Enquist, L.W., Husak, P.J., Banfield, B.W. & Smith, G.A. Infection and spread of alphaherpesviruses in the nervous system. Adv. Virus Res. 51, 237-347 (1998).
    4. Knotts, F.B., Cook, M.L. & Stevens, J.G. Pathogenesis of herpetic encephalitis in mice after ophthalmic inoculation. J. Infect. Dis. 130, 16-27 (1974).
    5. Biswas, P.S. & Rouse, B.T. Early events in HSV keratitis--setting the stage for a blinding disease. Microbes Infect. 7, 799-810 (2005).
    6. Liesegang, T.J. Herpes simplex virus epidemiology and ocular importance. Cornea 20, 1-13 (2001).
    7. Pepose, J.S. et at. Herpes simplex virus disease: Anterior segment of the eye. in Ocular Infection and Immunity (eds. Pepose, J.S., Holland, G.N. & Whilhelmus, K.R.) 905-932 (C.V. Mosby, St Louis, MO, 1996).
    8. Zheng, M., Deshpande, S., Lee, S., Ferrara, N. & Rouse, B.T. Contribution of vascular endothelial growth factor in the neovascularization process during the pathogenesis of herpetic stromal keratitis. J. Virol. 75, 9828-9835 (2001).
    9. Thomas, J., Gangappa, S., Kanangat, S. & Rouse, B.T. On the essential involvement of neutrophils in the immunopathologic disease: herpetic stromal keratitis. J. Immunol. 158, 1383-1391 (1997).
    10. Knickelbein, J.E., Hendricks, R.L. & Charukamnoetkanok, P. Management of herpes simplex virus stromal keratitis: an evidence-based review. Surv. Ophthalmol. 54, 226-234 (2009).
    11. Remeijer, L., Osterhaus, A. & Verjans, G. Human herpes simplex virus keratitis: the pathogenesis revisited. Ocul. Immunol. Inflamm. 12, 255-285 (2004).
    12. Group, H.E.D.S. Oral acyclovir for herpes simplex virus eye disease: effect on prevention of epithelial keratitis and stromal keratitis. Arch. Ophthalmol. 118, 1030-1036 (2000).
    13. Rezende, R.A., et al. Efficacy of oral antiviral prophylaxis in preventing ocular herpes simplex virus recurrences in patients with and without self-reported atopy. Am. J. Ophthalmol. 142, 563-567 (2006).
    14. Naesens, L. & De Clercq, E. Recent developments in herpesvirus therapy. Herpes 8, 12-16 (2001).
    15. Bacon, T.H., Levin, M.J., Leary, J.J., Sarisky, R.T. & Sutton, D. Herpes simplex virus resistance to acyclovir and penciclovir after two decades of antiviral therapy. Clin. Microbiol. Rev. 16, 114-128 (2003).
    16. Duan, R., et al. Acyclovir susceptibility and genetic characteristics of sequential herpes simplex virus type 1 corneal isolates from patients with recurrent herpetic keratitis. J. Infect. Dis. 200, 1402-1414 (2009).
    17. Duan, R., de Vries, R.D., Osterhaus, A.D., Remeijer, L. & Verjans, G.M. Acyclovir-resistant corneal HSV-1 isolates from patients with herpetic keratitis. J. Infect. Dis. 198, 659-663 (2008).
    18. Kim, B., et al. Inhibition of ocular angiogenesis by siRNA targeting vascular endothelial growth factor pathway genes: therapeutic strategy for herpetic stromal keratitis. Am. J. Pathol. 165, 2177-2185 (2004).
    19. Saravia, M., Zapata, G., Ferraiolo, P., Racca, L. & Berra, A. Anti-VEGF monoclonal antibody-induced regression of corneal neovascularization and inflammation in a rabbit model of herpetic stromal keratitis. Graefes Arch. Clin. Exp. Ophthalmol. 247, 1409-1416 (2009).
    20. Chen, S.H., Yao, H.W., Chen, I.T., Shieh, B., Li, C. & Chen, S.H. Suppression of transcription factor early growth response 1 reduces herpes simplex virus lethality in mice. J. Clin. Invest. 118, 3470-3477 (2008).
    21. Kundumani-Sridharan, V., et al. 15(S)-hydroxyeicosatetraenoic acid-induced angiogenesis requires Src-mediated Egr-1-dependent rapid induction of FGF-2 expression. Blood 115, 2105-2116 (2010).
    22. Shimoyamada, H., et al. Early growth response-1 induces and enhances vascular endothelial growth factor-A expression in lung cancer cells. Am. J. Pathol. 177, 70-83 (2010).
    23. Wang, D., Mayo, M.W. & Baldwin, A.S., Jr. Basic fibroblast growth factor transcriptional autoregulation requires EGR-1. Oncogene 14, 2291-2299 (1997).
    24. Jin, Y., Sheikh, F., Detillieux, K.A. & Cattini, P.A. Role for early growth response-1 protein in alpha(1)-adrenergic stimulation of fibroblast growth factor-2 promoter activity in cardiac myocytes. Mol. Pharmacol. 57, 984-990 (2000).
    25. Wuest, T., Zheng, M., Efstathiou, S., Halford, W.P. & Carr, D.J. The herpes simplex virus-1 transactivator infected cell protein-4 drives VEGF-a dependent neovascularization. PLoS Pathog. 7, e1002278 (2011).
    26. Santiago, F.S., Lowe, H.C., Day, F.L., Chesterman, C.N. & Khachigian, L.M. Early growth response factor-1 induction by injury is triggered by release and paracrine activation by fibroblast growth factor-2. Am. J. Pathol. 154, 937-944 (1999).
    27. Liu, L., Tsai, J.C. & Aird, W.C. Egr-1 gene is induced by the systemic administration of the vascular endothelial growth factor and the epidermal growth factor. Blood 96, 1772-1781 (2000).
    28. Vidal, F., Aragones, J., Alfranca, A. & de Landazuri, M.O. Up-regulation of vascular endothelial growth factor receptor Flt-1 after endothelial denudation: role of transcription factor Egr-1. Blood 95, 3387-3395 (2000).
    29. Haas, T.L., Stitelman, D., Davis, S.J., Apte, S.S. & Madri, J.A. Egr-1 mediates extracellular matrix-driven transcription of membrane type 1 matrix metalloproteinase in endothelium. J. Biol. Chem. 274, 22679-22685 (1999).
    30. Yan, S.F., et al. Egr-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress. Nat. Med. 6, 1355-1361 (2000).
    31. Su, Y.H., Yan, X.T., Oakes, J.E. & Lausch, R.N. Protective antibody therapy is associated with reduced chemokine transcripts in herpes simplex virus type 1 corneal infection. J. Virol. 70, 1277-1281 (1996).
    32. Yan, X.T., Tumpey, T.M., Kunkel, S.L., Oakes, J.E. & Lausch, R.N. Role of MIP-2 in neutrophil migration and tissue injury in the herpes simplex virus-1-infected cornea. Invest. Ophthalmol. Vis. Sci. 39, 1854-1862 (1998).
    33. Carr, D.J., Chodosh, J., Ash, J. & Lane, T.E. Effect of anti-CXCL10 monoclonal antibody on herpes simplex virus type 1 keratitis and retinal infection. J. Virol. 77, 10037-10046 (2003).
    34. Whitley, R.J. & Lakeman, F. Herpes simplex virus infections of the central nervous system: therapeutic and diagnostic considerations. Clin. Infect. Dis. 20, 414-420 (1995).
    35. Whitley, R.J., et al. Herpes simplex encephalitis. Clinical Assessment. JAMA 247, 317-320 (1982).
    36. Whitley, R.J. & Gnann, J.W. Viral encephalitis: familiar infections and emerging pathogens. Lancet 359, 507-513 (2002).
    37. Ito, Y., et al. Exacerbation of herpes simplex encephalitis after successful treatment with acyclovir. Clin. Infect. Dis. 30, 185-187 (2000).
    38. Casrouge, A., et al. Herpes simplex virus encephalitis in human UNC-93B deficiency. Science 314, 308-312 (2006).
    39. Zhang, S.Y., et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science 317, 1522-1527 (2007).
    40. Kukull, W.A. & Ganguli, M. Epidemiology of dementia: concepts and overview. Neurol. Clin. 18, 923-950 (2000).
    41. LaFerla, F.M., Green, K.N. & Oddo, S. Intracellular amyloid-beta in Alzheimer's disease. Nat. Rrev. Neurosci. 8, 499-509 (2007).
    42. Haass, C. & Selkoe, D.J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat. Rev. Mol. Ce.. Biol. 8, 101-112 (2007).
    43. Walsh, D.M., et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535-539 (2002).
    44. Cleary, J.P., et al. Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat. Neurosci. 8, 79-84 (2005).
    45. Beffert, U., Bertrand, P., Champagne, D., Gauthier, S. & Poirier, J. HSV-1 in brain and risk of Alzheimer's disease. Lancet 351, 1330-1331 (1998).
    46. Hemling, N., et al. Herpesviruses in brains in Alzheimer's and Parkinson's diseases. Ann. Neurol. 54, 267-271 (2003).
    47. Itzhaki, R.F., et al. Herpes simplex virus type 1 in brain and risk of Alzheimer's disease. Lancet 349, 241-244. (1997).
    48. Ball, M.J. "Limbic predilection in Alzheimer dementia: is reactivated herpesvirus involved?". Can. J. Neurol. Sci. 9, 303-306 (1982).
    49. Dinn, J.J. Transolfactory spread of virus in herpes simplex encephalitis. Br. Med. J. 281, 1392 (1980).
    50. Gordon, B., Selnes, O.A., Hart, J., Jr., Hanley, D.F. & Whitley, R.J. Long-term cognitive sequelae of acyclovir-treated herpes simplex encephalitis. Arch. Neurol. 47, 646-647 (1990).
    51. Corder, E., Lannfelt, L. & Mulder, M. Apolipoprotein E and herpes simplex virus 1 in Alzheimer's disease. Lancet 352, 1312-1313 (1998).
    52. Itabashi, S., Arai, H., Matsui, T., Higuchi, S. & Sasaki, H. Herpes simplex virus and risk of Alzheimer's disease. Lancet 349, 1102 (1997).
    53. Wozniak, M.A., Mee, A.P. & Itzhaki, R.F. Herpes simplex virus type 1 DNA is located within Alzheimer's disease amyloid plaques. J. Pathol. 217, 131-138 (2009).
    54. Mori, I., et al. Reactivation of HSV-1 in the brain of patients with familial Alzheimer's disease. J. Med. Virol. 73, 605-611 (2004).
    55. Denaro, F.J., Staub, P., Colmer, J. & Freed, D.M. Coexistence of Alzheimer disease neuropathology with herpes simplex encephalitis. Cell Mol. Biol. (Noisy-le-grand) 49, 1233-1240 (2003).
    56. Cribbs, D.H., Azizeh, B.Y., Cotman, C.W. & LaFerla, F.M. Fibril formation and neurotoxicity by a herpes simplex virus glycoprotein B fragment with homology to the Alzheimer's A beta peptide. Biochemistry 39, 5988-5994 (2000).
    57. Wojtowicz, W.M., et al. Stimulation of enveloped virus infection by beta-amyloid fibrils. J. Biol. Chem. 277, 35019-35024 (2002).
    58. Satpute-Krishnan, P., DeGiorgis, J.A. & Bearer, E.L. Fast anterograde transport of herpes simplex virus: role for the amyloid precursor protein of alzheimer's disease. Aging cell 2, 305-318 (2003).
    59. Cheng, S.B., Ferland, P., Webster, P. & Bearer, E.L. Herpes simplex virus dances with amyloid precursor protein while exiting the cell. PLoS One 6, e17966 (2004).
    60. Jankowsky, J.L., et al. Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomol. Eng. 17, 157-165 (2001).
    61. Sainz, B., Jr. & Halford, W.P. Alpha/Beta interferon and gamma interferon synergize to inhibit the replication of herpes simplex virus type 1. J Virol 76, 11541-11550 (2002).
    62. Lee, S.L., et al. Luteinizing hormone deficiency and female infertility in mice lacking the transcription factor NGFI-A (Egr-1). Science 273, 1219-1221 (1996).
    63. Lee, S.L., Tourtellotte, L.C., Wesselschmidt, R.L. & Milbrandt, J. Growth and differentiation proceeds normally in cells deficient in the immediate early gene NGFI-A. J. Biol. Chem. 270, 9971-9977 (1995).
    64. O'Donovan, K.J., Tourtellotte, W.G., Millbrandt, J. & Baraban, J.M. The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience. Trends Neurosci. 22, 167-173 (1999).
    65. Chauhan, D., et al. Involvement of serum response element in okadaic acid-induced EGR-1 transcription in human T-cells. Cancer Res. 54, 2234-2239 (1994).
    66. Metcalf, J.F., Koga, J., Chatterjee, S. & Whitley, R.J. Passive immunization with monoclonal antibodies against herpes simplex virus glycoproteins protects mice against herpetic ocular disease. Curr. Eye Res. 6, 173-177 (1987).
    67. Dana, M.R., Zhu, S.N. & Yamada, J. Topical modulation of interleukin-1 activity in corneal neovascularization. Cornea 17, 403-409 (1998).
    68. Fahmy, R.G., Dass, C.R., Sun, L.Q., Chesterman, C.N. & Khachigian, L.M. Transcription factor Egr-1 supports FGF-dependent angiogenesis during neovascularization and tumor growth. Nat. Med. 9, 1026-1032 (2003).
    69. Chen, S.H., et al. Efficient reactivation of latent herpes simplex virus from mouse central nervous system tissues. J. Virol. 80, 12387-12392 (2006).
    70. Tumpey, T.M., Chen, S.H., Oakes, J.E. & Lausch, R.N. Neutrophil-mediated suppression of virus replication after herpes simplex virus type 1 infection of the murine cornea. J. Virol. 70, 898-904 (1996).
    71. Babu, J.S., et al. Viral replication is required for induction of ocular immunopathology by herpes simplex virus. J. Virol. 70, 101-107 (1996).
    72. Biswas, P.S., Banerjee, K., Kim, B., Smith, J. & Rouse, B.T. A novel flow cytometry based assay for quantification of corneal angiogenesis in the mouse model of herpetic stromal keratitis. Exp. Eye Res. 80, 73-81 (2005).
    73. Santiago, F.S., et al. New DNA enzyme targeting Egr-1 mRNA inhibits vascular smooth muscle proliferation and regrowth after injury. Nat. Med. 5, 1264-1269 (1999).
    74. Chang, Y., et al. Induction of the early growth response 1 gene by Epstein-Barr virus lytic transactivator Zta. J. Virol. 80, 7748-7755 (2006).
    75. Aicher, W.K., Sakamoto, K.M., Hack, A. & Eibel, H. Analysis of functional elements in the human Egr-1 gene promoter. Rheumatol. Int. 18, 207-214 (1999).
    76. Bittlingmaier, K., Schneider, D. & Falke, D. Influence of dibutyryl cyclic AMP on thymidine uptake by herpes simplex virus infected cells and the intracellular level of cyclic AMP. Biochim. Biophys. Acta 477, 228-238 (1977).
    77. Kim, D.B. & DeLuca, N.A. Phosphorylation of transcription factor Sp1 during herpes simplex virus type 1 infection. J. Virol. 76, 6473-6479 (2002).
    78. Jang, K.L., Pulverer, B., Woodgett, J.R. & Latchman, D.S. Activation of the cellular transcription factor AP-1 in herpes simplex virus infected cells is dependent on the viral immediate-early protein ICPO. Nucleic Acids Res. 19, 4879-4883 (1991).
    79. Gylys, K.H., Fein, J.A., Tan, A.M. & Cole, G.M. Apolipoprotein E enhances uptake of soluble but not aggregated amyloid-beta protein into synaptic terminals. J. Neurochem. 84, 1442-1451 (2003).
    80. LaFerla, F.M., Troncoso, J.C., Strickland, D.K., Kawas, C.H. & Jay, G. Neuronal cell death in Alzheimer's disease correlates with apoE uptake and intracellular Abeta stabilization. J. Clin. Invest. 100, 310-320 (1997).
    81. Bu, G., Cam, J. & Zerbinatti, C. LRP in amyloid-beta production and metabolism. Ann. N. Y. Acad. Sci. 1086, 35-53 (2006).
    82. Bender, F.C., et al. Specific association of glycoprotein B with lipid rafts during herpes simplex virus entry. J. Virol. 77, 9542-9552 (2003).
    83. Gianni, T. & Campadelli-Fiume, G. alphaVbeta3-integrin relocalizes nectin1 and routes herpes simplex virus to lipid rafts. J. Virol. 86, 2850-2855 (2012).
    84. Kim, J., Basak, J.M. & Holtzman, D.M. The role of apolipoprotein E in Alzheimer's disease. Neuron 63, 287-303 (2009).
    85. Lai, A.Y. & McLaurin, J. Mechanisms of amyloid-Beta Peptide uptake by neurons: the role of lipid rafts and lipid raft-associated proteins. Int. J. Alzheimers Dis. 2011, 548380 (2010).
    86. Huemer, H.P., et al. Herpes simplex virus binds to human serum lipoprotein. Intervirology 29, 68-76 (1988).
    87. Becker, Y. Computer prediction of antigenic and topogenic domains in HSV-1 and HSV-2 glycoprotein B (gB). Virus Genes 6, 131-141 (1992).
    88. Geraghty, R.J., Krummenacher, C., Cohen, G.H., Eisenberg, R.J. & Spear, P.G. Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science 280, 1618-1620 (1998).
    89. Montgomery, R.I., Warner, M.S., Lum, B.J. & Spear, P.G. Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell 87, 427-436 (1996).
    90. Shukla, D., et al. A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 99, 13-22 (1999).
    91. Kawarabayashi, T., et al. Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer's disease. J. Neurosci. 21, 372-381 (2001).
    92. Mayeux, R., et al. Plasma amyloid beta-peptide 1-42 and incipient Alzheimer's disease. Ann. Neurol. 46, 412-416 (1999).
    93. Fukumoto, H., et al. Age but not diagnosis is the main predictor of plasma amyloid beta-protein levels. Arch. Neurol. 60, 958-964 (2003).

    無法下載圖示 校內:2021-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE