研究生: |
黃恩萍 Huang, En-Ping |
---|---|
論文名稱: |
鑽石及碳質物之高溫高壓拉曼光譜研究 In-Situ High Temperature and High Pressure Raman Spectroscopic Study of Diamond and Carbonaceous Materials |
指導教授: |
陳燕華
Chen, Yen-Hua |
共同指導教授: |
黃怡禎
Huang, Eugene 余樹楨 Yu, Shu-Cheng |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 159 |
中文關鍵詞: | 拉曼光譜 、鑽石 、碳質物 、高溫 、高壓 |
外文關鍵詞: | Raman spectroscopy, diamond, carbonaceous, high-temperature, high-pressure |
相關次數: | 點閱:64 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用拉曼光譜,針對鑽石及天然碳質物進行高溫高壓實驗,以觀察其在不同溫壓條件下之拉曼光譜的變化。並分析各種不同形式之碳質物振動模的相關性,並進一步了解其在晶格動力學上的意義。
鑽石在室溫下之T2g拉曼振動模隨壓力變化所測得之斜率值為2.58 cm-1/GPa及1.47 cm-1/GPa,前一組趨向靜水壓的環境,後一組則趨向非靜水壓之結果。室壓高溫實驗中,可發現鑽石之振動模隨溫度增高而往低頻方向移動,斜率值約為-0.015cm-1/T(℃)。而鑽石現地高溫高壓實驗結果顯示,在等溫條件下(溫度分別於150℃、200℃及260℃),振動模頻率隨壓力變化之斜率,隨溫度昇高而降低。
不同種類的碳質物可藉由拉曼特徵峰之峰型及R1值(R1 ratio)區分出。碳質物之3個特徵峰(D1, D2, G)及石墨之2個特徵峰(D1, G)之峰值隨溫度上昇均呈負斜率之變化,且在加溫至600℃以下,皆呈可逆的現象。高壓實驗中,油母質及石墨之特徵峰則隨壓力上昇呈正斜率之變化,也呈可逆的現象。油母質之G band隨高溫或高壓之斜率變化,1GPa約等於190℃之變化。
碳質物在本實驗之過程中,無論高溫或高壓下,均以可逆之形式變化,意味著在短時間無法藉溫度及壓力之因素使碳質物轉變為石墨;此表示自然界碳質物之石墨化過程是非常複雜的,無法如實驗室中僅簡單考慮單一因子而模擬之。
本實驗發現碳質物會受到雷射功率大小的影響而導致頻譜的位移。因此在進行碳質物之拉曼光譜研究時,建議將雷射功率調整在10-20mW之間,或者先行修正雷射功率所造成的影響較為恰當。
This study utilized Raman spectroscopy to investigate various natural carbonaceous materials (CM) at high-temperature and/or high-pressure in order to observe the changes of Raman modes of CM under different conditions of temperatures and pressures. The results will help provide information for the understanding of the lattice dynamics as well as the inter-relationships among CM.
The vibration band of diamond shifts toward higher frequency with increasing pressure. The mode shift of T2g as a function of pressure (∂ν/∂P) yields two sets of slope, i.e., 2.58cm-1/GPa and 1.47cm-1/GPa. The former value is consistent with that reported in a hydrostatic experiment while the latter signifies that experiment was under a nonhydrostatic compression. The T2g vibrational mode shifts toward lower frequency with increasing temperature with an average slope of –0.015cm-1/T (℃) up to 300℃. The slope of T2g vibrational mode shift at constant temperature, (∂ν/∂P)T, becomes smaller with a raise in temperature for each isothermal.
It was found that different species of CM could be distinguished on the basis of their characteristic Raman peaks and the R1 ratio. At high temperature, wavenumber of the 3 characteristic Raman modes of kerogen (D1, D2, G) and 2modes of graphire (D1, G) show negative slope with the increase of temperature up to a maximum temperature of 600℃. The change in wavenumber shift is reversible. With the increase of pressure, the Raman modes show positive slope of (∂ν/∂P) in both kerogen and graphite. Therefore, the effect of pressure and temperature counter-balances each other in mode shift. For instance, the mode shift of G band of 1 GPa in preessure is equivalent to 190℃ of temperature in kerogen.
In this experiment, the mode shift is reversible with respect to the effect of temperature and pressure. Therefore the graphitization of CM could not be stabilized within a short period of time in this experiment despite the high temperature or high pressure. There exists a large difference between what occurs in nature and in the laboratory. This indicates that the graphitization of CM in nature is very complex and controlled by multiple factors such as temperature, pressure and time and therefore, it cannot be simulated by simply considering any individual factor in the laboratory.
During the experiment, it was found that the Raman mode shift in CM was affected by the intensity of the incident laser beam. It is suggested that the laser power be adjusted to 10-20mW when Raman spectroscopy is applied to the study of CM.
AlcanÄiz-Monge, J., D. Cazorla-AmoroÂs and A. Linares-Solano, Characterisation of coal tar pitches by thermal analysis, infrared spectroscopy and solvent fractionation. Fuel, 80, 41-48, 2001.
Alder, B. J. and R. H. Christian, Behavior of strongly shocked carbon. Phys. Rev. Letters, 15, 367-369, 1961.
Al-Jashi, R. and G. Dresselhaus, Lattice-dynamical model for graphite. Phys. Rev. B, 26, 4514-4522 , 1982.
Baonza, V. G., M. Taravillo, A. Arencibia, M. Caceres and J. Nunez, Diamond as pressure sensor in high-pressure Raman spectroscopy using sapphire and other gem anvil cells. J. Raman Spectrosc. 34, 264–270, 2003.
Barnett, J. D., Block, S. and Piermarini, G. J., An optical fluorescence system for quantitative pressure measurement in the diamond-anvil cell. Rev. Sci. Instrum., 44, 1-9, 1973.
Bassett W. A., A. H. Shen and M. Bucknum, A new diamond anvil cell for hydrothermal studies to 2.5GPa and from -190 to 1200℃. Rev. Sci. Instrum., 64, 2340-2345, 1993.
Bassett, W.A and T. Takahashi, Silver iodide polymorphs. Am. Miner., 50, 1576-1594, 1965.
Behar, F., M. D. Lewan, F. Lorant and M. Vandenbroucke, Comparison of artificial maturation of lignite in hydrous and nonhydrous conditions. Org. Geochem, 34, 575-600, 2003.
Benfell, K. E., B. B. Beamish and K. A. Rodgers, hermogravimetric analytical procedures for characterizing New Zealand and Eastern Australian coals. Thermochim. Acta, 286, 67-74, 1996.
Beny-Bassez, C. and J. N. Rouzaud, Characterization of carbonaceous materials by correlated electron and optical microscopy and Raman microspectroscopy. Scan. Elec. Micro., 1, 119-132, 1985.
Beyssac, O., M. Simoes, J. P. Avouac, K. A. Farley, Y. G. Chen, Y. C. Chan, and B. Goffe, Late Cenozoic metamorphic evolution and exhumation of Taiwan. Tectonics, 26, TC6001, 1-32, 2007.
Beyssac, O., B. Goffe, C. Chopin and J. N. Rouzaud, Raman spectra of carbonaceous material in metasediments:a new geothermometer. J. Metamorph. Geol., 22, 859-871, 2002.
Beyssac, O., F. Brunet, J. P. Petitet, B. Goffe and J. N. Rouzaud, Experimental study of the microtextural and structural transformations of carbonaceous materials under pressure and temperature. Eur. J. Mineral, 15, 937–951, 2003.
Bundy, F. P., Direct conversion of graphite to diamond in static pressure apparatus. Science, 137, 1057-1058, 1962.
Bundy, F. P., H. P. Bovenkerk, H. M. Strong and R. H. Wentorf, Jr., Diamond- graphite equilibrium line from growth and graphitization of diamond. J. Chem. Phys., 35, 383-391, 1961.
Bundy, F. P., W.A. Bassett, M.S. Weathers, R. J. Hemley, H. K. Mao and A.F. Goncharov, The pressure-temperature phase transformation Diagram for Carbon; updated through 1994. Carbon, 34(2), 141-153, 1996.
Buseck, P. K. and B. J. Huang, Conversion of carbonaceous material to graphite during metamorphism. Geochim. Cosmochim. Acta. , 49, 2003-2016, 1985.
Bustin, M., J. N. Rouzaud and J. V. Ross, Natural Graphization of Anthracite: Experimental Considerations. Carbon, 33, 679-691, 1995.
Cardona, M., Light scattering in Solids (III). Springer-Verlag Belin Heidelberg, New York, 3-42, 1975.
Cuesta, A., P. Dhamelincourt, J. Laureyns, A. M. Alonso and J. M. D. Tascon, Raman microprobe studies on carbon materials. Carbon, 32, 1523-1532, 1994.
De Fonton, S., A. Oberlin and M. Inagaki, Characterization by electron microscopy of carbon phases (intermediate turbostratic phase and graphite) in hard carbons when heat-treated under pressure. J. Mater. Sci. , 15, 909-917, 1980.
Dillon, R. O. and J. A. Woollam, Use of Raman scattering to investigate disorder and crystallite formation in as-deposited and annealed carbon films. Phys. Rev. B, 29, 3482-3489, 1984.
Edman, J. D. and Surdam R. C., Influence of overthrusting on maturation of hydrocarbons in Phosphoria Formation, Wyoming-Idaho-Utah overtrust belt. Amer. Assoc. Petrol. Geol., 68, 1803-1817, 1984.
Everall, N. J., J. Lumsdon and D. J.Christopher, The effect of laser-induced heating upon the vibrational Raman spectra of graphites and carbon fibres. Carbon, 29, 133-137, 1991.
Fadini, A. and F. M. Schnepel, Vibrational Spectroscopy-Methods and Applications. Ellis Horwood Limited, England, 205, 1989.
Fischbach, D. B. and M. Couzi, Temperature dependence of Raman scattering by disordered carbon materials. Carbon, 24, 365-369, 1986.
Fitzer, E. and F. Eozploch, Some remarks on Raman spectroscopy of carbon structures. High Temp. – High Press., 20, 449-454, 1988.
Ghiringhelli, L. M., J. H. Los, E. J. Meijer, A. Fasolino and D. Frenkel, Modeling the phase diagram of carbon. Phys. Rev. Letters, 94, 145701-1-4, 2005.
Goncharov, A. F., I. N. Makarenko and S. M. Stishov, Graphite at pressure up to 55 GPa: Optical properties and Raman scattering-amorphous carbon? Soviet Physics. JETP, 69 (2), 380-381, 1989.
Goncharov, A. F., J. M. Zaug, and J. C. Crowhurst, and E. Gregoryanz, Optical calibration of pressure sensors for high pressures and temperatures. J. Appl. Phys. 97, 094917, 1-5, 2005.
Green, P. D., C. A. Johnson and K. M. Thomas, Applications of laser Raman microprobe spectroscopy to the characterization of coals and cokes. Fuel, 62, 1013-1023, 1983.
Grew, E. S., Carbonaceous material in some metamorphic rocks of New Zealand and other areas. J. Geol. , 82, 50-73, 1974.
Hanfland, M. and K. Syassen, Pressure dependence of the first-order Raman mode in diamond. Phys. Rev. B, 31, 6896-6899, 1985.
Herchen, H and M.A. Cappelli, First-order Raman spectrum of diamond at high temperatures. Phys. Rev. B, 43, 11740-11744, 1991.
Huong, P. V., Structural studies of diamond films and ultrahard materials by Raman a micro-Raman spectroscopies. Diam. Relat. Mater. , 1, 33-41, 1991.
Inagaki, M., A. Oberlin and S. de Fonton, Texture change in hard carbon on heat treatment under pressure. High Temp. – High Press, 9, 453-460, 1977.
Itaya T., Carbonaceous material in politic schist of the Sanbagawa metamorphic belt in central Shikoku, Japen. Lithos, 14, 215-224, 1981.
Jehlicˇka, J. and H.G.M., Edwards Raman spectroscopy as a tool for the on-destructive identification of organic minerals in the geological record. Org. Geochem, 39, 371-386, 2008.
Kagi, H., I. Tsuchida, M. Wakatsuki, K. Takahashi, N. Kamimura, K. Iuchi and H.Wada, Proper understanding of down-shifted raman spectra of natural graphite: direct estimation of laser-induced rise in sample temperature. Geochim Cosmochim Ac, 58, 3527-3530, 1994.
Kamiya, K., M Inagaki. and T. Noda, Oriented heterogeneous graphitization of carbons under high pressure. High Temp. – High Press, 5, 331-338, 1973.
Katagiri, G. H. Ishida and A. Ishitani, Raman spectra of graphite edge planes. Carbon, 26, 565-571, 1988.
Kieffer, S. W., Heat capacity and entropy: systematic relations to lattice vibrations. In Mineral. Soc. of Am., 14, 65-126, 1985.
Landis C. A., Graphitization dispersed carbonaceous material in metamorphic rock. Contrib. Mineral Petrol., 30, 34-35, 1971.
Landis, C. R. and J. R. Cast, Maturation and bulk chemical properties of a suite of solid hydrocarbons. Org. Geochem, 22, 137-149, 1995.
Lespade, P., R. Al-Jishi and M. S. Dresselhaus, Model for Raman scattering from incompletely graphitized carbons. Carbon, 20, 427-431, 1982.
MacPhee, J. A., J. P. Charland and L. Giroux, Application of TG–FTIR to the determination of organic oxygen and its speciation in the Argonne premium coal samples. Fuel Process. Technol., 87, 335-341, 2006.
Maeda, A., and T. Seko, Effect of hydrocarbon compostions in the M85 fuel on catalytic conversion. Catalysis Today, 45,p153-158, 1998.
Maeta, H. and Sato Y., Raman spectra of neutron-irradiated pyrolytic graphite. Solid State Commun., 23, 23-25, 1977.
Mao, H. K., J. Xu, And P. M. Bell, Calibration of ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Research, 91, 4673-4676, 1986.
Marchand, A., P. Lespad and M. Couzi, Ext. Abs 15th Biennial Conference on Carbon, 282, 1981.
McMillan, P. F. and A. M. Hofmeister, Infrared and Raman spectroscopy, in "Spectroscopic Methods in Mineralogy and Geology". Rev. Mineral., 18, ed. F.C. Hawthorne, 99-160, 1988.
McMillan, P. F., Vibrational spectroscopy in the mineral sciences. Mineral. Soc. of Am., 14, 9-63, 1985.
Mernagh, T. P. R. P. Cooney and R. A. Johnson, Raman spectra of graphite carbon black. Carbon, 22, 39-42, 1984.
Mounet, N. and N. Marzari, First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives. Phys. Rev. B, 71, 205214, 1-14, 2005.
Nakamizo, M., R. Kammereck and J. Walker, Lasr Raman studies on carbons. Carbon, 12, 259-269, 1974.
Nemanich, R. J. and Solin S. A., First and second-order Raman scattering from finite-size crystals of graphite. Phys. Rev. B, 20, 392-401, 1979.
Nikiel, L. and P. W. Jagodzinski, Raman spectroscopic characterization of graphite: A re-evaluation of spectra structure correlation. Carbon, 31, 1313-1317, 1993.
Noda, T. and H. Kato, Heat treatment of carbon under high pressure. Carbon, 3, 289-297, 1965.
Papoular, R., The use of kerogen data in understanding the properties and evolution of interstellar carbonaceous dust. Astron. Astrophys., 378, 597-607, 2001.
Pasteris J. D., In situ analysis in geological thin-sections by laser Raman microprobe spectroscopy: A cautionary note. Appl. Spectrosc, 43, 567-570, 1989.
Pearson, D. G., F. Boyd, S. E. Haggerty, J. D. Pasteris, S. W. Field, Nixon P. H., and N. P. Pokhilenko, The characterization and origin of graphite in cratonic lithospheric mantle: a pertological carbon isotope and Raman spectroscopic study. Contrib. Mineral Petrol., 115, 449-466, 1994.
Ragan, D. D., R. Gustavsen and D. Schiferl, Calibration of the ruby R1, and R2 fluorescence shifts as a function of temperature from 0 to 600 K. J. Appl. Phys. 72, 5539-5544, 1992.
Rahl, J. M, K. M. Anderson, M. T. Brandon and C. Fassoul, Raman spectroscopic CM material thermometry of low-grade metamorphic rocks: Calibration and application to tectonic exhumation in Crete, Greece. Earth. Planet. Sc. Lett., 240, 339-354, 2005.
Ross, J. V. and R. M. Bustin, The role of strain energy in creep graphitization of anthracite. Nature, 343, 58-60, 1990.
Rouzaud, J. N. and A. Oberlin, Structure, microtexture, and optical properties of anthracene and saccharose-based carbons. Carbon, 27, 517-529, 1989.
Sato, N., N. Tatsuda, and T. Kurauchi, Application of laser Raman spectroscopy to the analysis of stress distribution of fibres in composites. J. Mater. Sc. Lett., 11, 365-366, 1992.
Savage, P. E., Mechanisms and kinetics models for hydrocarbon pyrolysis. J. Anal. Appl. Pyrol., 54, 109-126, 2000.
Schiferl, D., M. Nicol, and J. M. Zaug, The diamond 13C/12C isotope Raman pressure sensor system for high temperature/pressure diamond-anvil cells with reactive samples. J. Appl. Phys. 82, 3256-3265, 1997.
Syassen, K., Ruby under pressure. High Press. Res., 28, 75-126, 2008.
Tardieu, A., F. Cansell and J. P. Petitet, Pressure and temperature dependence of the first-order Raman mode of diamond. J. Appl. Phys. 68,3243-3245, 1990.
Teichmüller, M., Organic material and very low-grade metamorphism. In: Frey, M. (ed.) Low Temperature Metamorphism. Glasgow: Blackie, 114-161, 1987.
Trueb, L. F., An electro-microscope study of shock-synthesized diamond. J. Appl. Phys., 39, 4707-4716, 1968.
Tuinstra, F. and J. L. Koenig, Raman spectrum of Graphite. J. Chem. Phys., 53, 1126-1130, 1970.
Vidano, R. P and D. B. Fischbach, New lines in the Raman spectra of carbons and graphites. J. Am. Ceram. Soc., 61, 13-17, 1978.
Vidano, R. P., Fischbach D. B., Willis L. J. and Loehr T. M., Observation of Raman band shifting with excition wavelength for carbon and graphites. Solid State Commun., 39, 341-344, 1981.
Wang, X., G. M. Zhang, Y. L. Zhang, F. Y. Li, R. C. Yu, C. Q. Jin and G. T. Zou, Graphitization of glassy carbon prepared under high temperatures and high pressures. Carbon, 41, 179-198, 2003.
Wang, Y., C. A. Daniel and L. M. Richard, Raman spectroscopy of carbon materials: Structural basis of observed spectra. Chem. Mater., 2, 557-563, 1990.
Wopenka, B. and J. D. Pasteris, Structural characterization of kerogens to granulite-facies graphite: Applicability of Raman microprobe spectroscopy. Am. Miner. , 78, 533-557, 1993.
Wu, B. R. and J. Xu, Zone-center modes of cubic and hexagonal diamond under high pressure: A first-principles study. Phys. Rev. B, 60, 2964-2967, 1999.
Wu, B. R. and Ji-an Xu, Total energy calculations of the lattice properties of cubic and hexagonal diamond. Phys. Rev. B, 57, 13355-13358, 1998.
Wu, B. R., Structural and vibrational properties of the 6H diamond: First-principles study. Diam. Relat. Mater., 16, 21-28, 2007.
Xu, J. and E. Huang, Graphite-diamond transition in gem anvil cells. Rev. Sci. Instrum., 65(1), 204-207, 1994.
Xu, J., H. K. Mao and R. J. Hemley, The gem anvil cell : high-pressure behaviour of Diamond relation Material, J. Phys.: Condense Matter, 14, 11549-11552, 2002a.
Xu, J., H. K. Mao, R. J. Hemley and E. Hines, The moissanite anvil cell: a new tool for high-pressure research, J. Phys.: Condense Matter, 14, 11543-11548, 2002b.
Xu, J.and H. K. Mao, Moissanite: A window for high-pressure experiments, Science, 290, 783-785, 2000.
Yui, T. F., E. Huang, and J. Xu, Raman spectrum of carbonaceous material: a possible metamorphic grade indicator for low-grade metamorphic rocks. J. Metamorph. Geol. , 14, 115-124, 1996.
Yusa, H., K. Takemura, Y. Matsui, H. Morishima and K. Watanabe, Direct transformation of graphite to cubic diamond observed in a laser-heated diamond anvil cell, Appl. Phys. Letters, 72, 1843-1845, 1998.
Zouboulis, E and M. Grimsditch, Raman scattering in diamond up to 1900K, Phys. Rev. B, 43, 12490-12493, 1991.
王冠益,摩星石砧:一種新型的高溫高壓砧,碩士論文,成功大學,1-56,2002。
王曾輝、高晉生,碳素材料。華東化工學院出版社,台北,27,50-59,1983。
黃怡禎,礦物學(譯著) Manual of Mineralogy 2nd edition,地球科學文教基金會,台北,347-348,2002。