簡易檢索 / 詳目顯示

研究生: 蕭心縈
Hsiao, Hsin-Ying
論文名稱: 光渦流陣列雷射光束之產生及其於光鉗應用之探討
Generation of Optical Vortex Array Laser Beams and investigation on its application of Tweezers
指導教授: 朱淑君
Chu, Shu-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 72
中文關鍵詞: 光鉗
外文關鍵詞: Ince-Gaussian Beams
相關次數: 點閱:79下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雷射光鉗技術目前已逐漸趨於成熟,但在多點捕捉粒子以及光渦流(Optical Vortex)技術的部分,大多都還是利用全像術(Hologram)和Spatial light modulation (SLM)造成雷射光相位的改變。本篇論文的工作希望產生陣列形的光渦流雷射光束應用於雷射光鉗多點捕捉的目的,但與過去產生陣列形光渦流雷射光束最大的區隔在於本論文實驗光鉗系統的光源不是雷射光經由全像片或是SLM 產生,而是所激發出的雷射光束本身就是帶有週期性的光場分布,只需要經過簡單的干涉儀架設就可以有陣列形光渦流雷射光束。這對於雷射光鉗的架設及應用的確有更大的便利性。
    本論文的工作主要分為兩大部分。首先是經過嵌有GdVO4 晶體的雷射共振腔激發出一種嶄新型態的雷射光模態Ince-Gaussian Beams(IGBs)並且驗證這類帶有週期性光場分布的雷射光束經過嵌入Dove prism 的Mech-Zehdner 干涉儀的確會產生陣列形光渦流雷射光束,且光場分布會因為改變干涉儀兩光束之間的光程差而有所變化。
    第二部分將陣列形光渦流雷射光束當作光鉗系統的光源,捕捉Duke 8150 Series 大小為1.5μm 的Silica 標準微粒子,和Sigma 大小為2μm的聚苯乙烯(Polystyrene)粒子,比較當一般TEM00 的雷射和實驗中的陣列形光渦流雷射光束應用在捕捉微米級粒子的受力與捕捉的穩定度。

    The technique of laser optical tweezers have become gradually mature nowadays, but most of the techniques of multi-spot particle-capturing and the optical vortex are relying on the change of phase of laser caused by the Hologram and the Spatial light modulation (SLM). This thesis aims to accomplish the techniques of multi-spot particle-capturing and the optical vortex as well. However, the major difference between the approach we used in this thesis and previous approaches is the light source of the tweezers system. The light source we used in the thesis is a kind of special laser beam having periodic intensity distribution, thus we can create vortex array laser beams with a simple interferometer configuration. This technique would bring greater convenience for the set-up and the application of laser optical tweezers.
    There are two major tasks of this thesis. First, we excite a new kind of cavity lasing eigenmodes, Ince-Gaussian Beams (IGBs) from a laser resonant cavity embedded with the GdVO4 crystal. In this thesis, we proves that when passing this kind of laser beam through the Mech-Zehnder interferometer embedded with Dove prism, the IGBs will convert to vortex array laser beams. Moreover, changing the optical path difference between the two split beams in interferometer can influence the intensity distribution as well.
    In the second part of the thesis, we take vortex array laser beams as the light source of the tweezers system for capturing the particles: Duke 8150 Series (1.5μm-sized standard Silica micro-particle) and the Sigma (2μm-sized Polystyrene particle). This study compares the force and stability while capturing micro particles by using vortex array laser beams and by using the TEM00 laser.

    目錄 摘要 ............................................... I Abstract ......................................... III 致謝 .............................................. IV 目錄 .............................................. VI 圖表目錄 ........................................ VIII 第一章 前言......................................... 1 第二章 光鉗原理 .................................... 3 2.1 光鉗發展歷史回顧 ............................... 3 2.2 幾何光學模型(Ray-Optics Model) ................. 6 2.3 電磁波模型(Electromagnetic Model) ............. 10 2.4 光渦流(Vortex) ................................ 12 第三章 Ince Gaussian Beams ........................ 15 3.1 Ince Gaussian Beams ........................... 15 3.2 Ince Gaussian Beams to Optical Vortex ......... 19 3.3 陣列形光渦流雷射光束 .......................... 28 第四章 實驗儀器與裝置 ............................. 30 4.1 光渦流陣列雷射光束實驗架設 .................... 30 4.2 檢驗光渦流陣列雷射光束之實驗架設 .............. 33 4.3 光渦流陣列雷射光束於光鉗實驗架設 .............. 34 第五章 實驗結果與分析 ............................. 36 5.1 光渦流陣列雷射光束............................. 36 5.2 分析光鉗作用力之流程 .......................... 53 第六章 結論與未來展望 ............................. 69 6.1 結論 .......................................... 69 6.2 未來展望 ...................................... 71 參考資料 .......................................... 72

    [1] A. Ashkin, “acceleration and trapping of particles by radiation pressure.” Phy. Rev. Lett. 24 156(1970)
    [2] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and Steven Chu , “Observation of a single-beam gradient force optical trap for dielectric particles.” Opt. Lett. 11, 288 (1986)
    [3] R. C. Gauthier and S. Wallace, “Optical levitation of spheres : analytical development and numerical computations of the force equations.” J. Opt. Soc. Am. B 12 1680(1995)
    [4] J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam. ” J. Appl. Phys. 66,4594(1989)
    [5] E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics.” Rev. Sci. Instrum. 69 1974(1998)
    [6] Y. Ogura, N. Shirai, and J. Tanida, “Optical levitation and translation of a microscopic particle by use of multiple beams generated by vertical-cavity surface-emitting laser array sources.” Appl. Opt. 41 5645(2005)
    [7] K. T. Gahagan and G. A. Swartzlander, Jr. “Optical vortex trapping of particles.” Opt. Lett. 21, 827 (1996)
    [8] K. T. Gahagan and G. A. Swartzlander, Jr., “Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap.” J. Opt. Soc. Am. B 16, 533(1999)
    [9] J. E. Curtis and D. G. Grier, “Structure of Optical Vortices.” Phy. Rev. Lett. 90, 133901(2003)
    [10] J. A. Grieve, A. Ulcinas, S. Subramanian, G. M. Gibson, M. J. Padgett, D. M. Carberry, and M. J. Miles, “Hands-on with optical tweezers:a multitouch interface for holographic optical trapping.” Opt. Exp. 17, 3595(2009)
    [11] M. A. Bandres and J. C. Gutiérrez-Vega, “Ince-Gaussian beams.” Opt. Lett. 29 144(2004)
    [12] S. C. Chu, C. S. Yang, and K. Otsuka, “Vortex array laser beam generation from a Dove prism-embedded unbalanced Mech-Zehnder interferometer.” Opt. Lett. 16 19934(2008)
    [13] N. B. Viana, R. T. S. Freire, and O. N. Mesquita, “Dynamic light scattering from an optically trapped microsphere.” Phy. Rev. E 65 041921(2002)

    無法下載圖示 校內:2011-08-19公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE