| 研究生: |
林敬祐 Lin, Chung-Yu |
|---|---|
| 論文名稱: |
影像伺服微物件姿態調整與定位組裝系統之發展 Development of Visual-Servo Alignment, Positioning and Assembly of Micro Object |
| 指導教授: |
張仁宗
Chang, Ren-Jung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 姿態調整 、影像伺服 、軸孔組裝 |
| 外文關鍵詞: | peg in hole, Visual-Servo, Alignment |
| 相關次數: | 點閱:65 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文為PC-Based即時影像伺服自動化微組裝系統,搭配影像演算法,發展自動化微組裝系統,系統主要分為影像系統、微物件安置與定位系統及微組裝系統三大部份。
系統以工業電腦並搭配LabVIEW做為人機介面發展軟體,該軟體提供相當友善的圖形化人機介面,系統藉LabVIEW整合三個子系統。首先為影像系統,為改善置物平台光場以透光平台提高影像辨識度,省去影像前處理減少運算時間,達到即時影像伺服,應用曲線擬合區域邊緣統計演算法與樣板比對達成影像定位控制,並透過光場與影子之關係發展出單CCD三維空間之定位。接著為微物件安置與定位系統,以操縱器安置並定位微物件,操縱器外型為圓錐狀,尖端直徑為150μm,利用狀態機對各個狀態的監控,經由狀態的轉換有效的安置與定位微物件。最後為微組裝系統部份,利用PU材料以準分子雷射加工,製造出微夾持器,其尺寸約為546x669x100μm3,並以壓電致動器驅動的撓性微夾持器,以夾持圓柱型微物件直徑約為60~90μm,可搬運並執行組裝任務。
本研究成功的安置並定位微物件,並且成功的以影像識別自動化組裝,物件直徑88μm,組合件孔徑100μm,其間隙比為0.12。
In this paper, A PC-Based real-time visual-servo automatic microassembly system was developed and tested, the system is composed of three systems, which are visual-servo system, micro object alignment system and microassembly system.
The system is developed on the industrial computer with LabVIEW man-machine interface software, the software provides friendly GUI, the system integrates three subsystems through LabVIEW. The first one is the visual-servo system, the object stage of light field is improving, and then to improve the image recognition and reduce operational time of image pretreatment and the image servo achieved real-time, the image positioning control applies the RES with curve fitting and template matching, developing the single-CCD three-dimensional positioning through light field and the shadow of relationship. Next is the micro object alignment system, using the manipulation to alignment and position micro object, the shaped of manipulation is cone and the tip diameter is about 150μm, the state machine monitors individual states, through the states transition effectively align and position objects. At last is microassembly system, the tool of object transport system is utilizing a piezo-drived compliant micro gripper with size of 669×546×100μm3, which can grasp the thin cylinder with diameter 60~90μm, so can move and assemble tasks.
The research achieved to supply alignment and positioning micro object, and automatically assembly through visual-servo, the peg size of the diameter is 88μm, the hole size of the diameter is 100μm, that clearance ration is 0.12.
[1]Seth Hutchinson, Gregory D. Hager, and Peter I. Corke, “A Tutorial on Visual Servo Control,” IEEE Transactions On Rorotlcs And Automation, Vol. 12, No. 5, October 1996
[2] D. Kragic, and H. I. Christensen, “Survey on Visual Servoing for Manipulation,” IEEE Transaction on Robotics & Automation, Vol. 15, No. 2, pp. 238-250, April. 1999.
[3] M. Mikawa, K. Yoshida, M. Kubota , and T. Morimitsu “Visual servoing for micro mass axis alignment device,” Conference of Intelligent Robots and Systems '96, IROS 96, Proceedings of the 1996 IEEE/RSJ International, vol.3,pp.1091-1096, Nov ,1996.
[4] W. Zesch, and R. S. Fearing, “Alignment of Microparts Using Force Controlled Pushing,” Conference of Microrobotics and micromanipulation, vol. 3519, pp. 148-156, 1998.
[5] A. Ferreira, C. Cassier and S. Hirai,” Automatic Microassembly System Assisted by Vision Servoing and Virtual Reality,“IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 9, NO. 2, JUNE 2004
[6] J. J. Gorman, and N. G. Dagalakis, “Probe-based Micro-scale Manipulation and Assembly Using Force Feedback,” Proc. International Confetrence on Robotics and Remote System for Hazardous Envirinments, 2006.
[7] N. A. Lynch, C. D. Onal, E. Schuster and M. Sitti, “Vision-based Feedback Strategy for Controlled Pushing of Microparticles,” J. of Micro-Nano Mech, 2008.
[8] C. Clevy, A. Hubert, J. Agnus and N. Chaillet, “ A micromanipulation cell including a tool changer,” Journal of Micromechanics Microengineering, ” Vol.15, pp. 292-301, 2005.
[9] A. Sulzmann, J. M. Breguet and J. Jacot, “Micromotor Assembly Using High Accurate Optical Vision Feedback For Microrobot Relative 3D Displacement In Submicron Range,” Proceedings of the IEEE International Conference on Solid-State Sensors and Actuators, Vol.1, Pages: 279-282, June 1997.
[10] M.C. Carrozza, P. Dario, A. Menciassi and A. Fenu, “Manipulating Biological and Mechanical Micro-Objects Using LIGA-Microfabricated End-Effectors,” Proceedings of the IEEE International Conference on Robotics & Automation, Vol.2, Pages: 1811-1816, May 1998.
[11] M. Höhn and C. Robl, “Qualification of Standard Industrial Robots for Micro- Assembly,” Proceedings of the IEEE International Conference on Robotics and Automation, Vol.4, Pages: 3085-3090, May 1999.
[12] H. Woern, J. Seyfried, St. Fahlbusch, A. Buerkle and F. Schmoeckel, “Flexible Microrobots for Micro Assembly Tasks,” Proceeding of the 2000 International Symposium on Micromechatronics and Human Science, pp. 135-143, Oct. 2000.
[13] X. Li, G. Zong and S. Bi, “Development of Global Vision System for Biological Automatic Micro-Manipulation System,” Proceedings of the IEEE International Conference on Robotics and Automation, Vol.1, Pages: 127-132, May 2001.
[14] H. Yamamoto and T. Sano, “Study of Micromanipulation Using Stereoscopic Microscope,” IEEE Transaction on Instrumentation and Measurement, Vol.51, Pages: 182-187, April 2002.
[15] A. Suzuki, T. Arai, Y. Mae, K. Inoue and T. Tanikawa, “Automated Micro Handling,” Proc. of the IEEE Int. Symposium on Computational Intelligence in Robotics and Automation, Vol.1, Pages: 348-353, July 2003.
[16] P. Korhonen, Q. Zhou, J. Laitinen, and S. Sjovall, “Automatic Dextrous Handling of Micro Components Using a 6 DOF Microgripper,” Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation, 2005, Finland.
[17] K. B. Yesin and B. J. Nelson, “A CAD Model Based Tracking System for Visually Guided Microassembly,” J. of Robotica, Vol. 23, pp. 409-418, 2005.
[18] Y. H. Anis, J. K. Mills, and W. L. Cleghorn, “Automated Microassembly Task Execution Using Vision-based Feedback Control,” Proceedings of the International Conference on Information Acquisition, IEEE, 2007.
[19] R. J. Chang, and C. C. Chen, “Using Microgripper for Adhesive Bonding in Automatic Microassembly System,“ ICMA, IEEE, China, 2007.
[20] B Kim, H Kang, DH Kim, GT Park, JO Park, “A flexible microassembly system based on hybrid manipulation scheme for manufacturing photonics components,” IEEE/RSJ International Conference on Intelligent Robots and Systems,2003.
[21]X. Tao, H. Cho and Y. Cho, “Microassembly of peg and hole using active zooming,” Optomechatronic Systems Control, edited by Farrokh Janabi-Sharifi, Proc. of SPIE Vol. 6052, 605204,2005.
[22] G. Yang, J.A. Gaines and B.J. Nelson “Optomechatronic Design of Microassembly Systems for Manufacturing Hybrid Microsystems,” IEEE transactions on industrial electronics, 2005.
[23] Xiaodong Wang, Xiujun Wang, Yi Luo, Chong Liu,“ Liqun Ma, ” Vision-Based Assembly of Capillary for Microfluidic Device,” Intelligent Robots and Systems, Conference on , IEEE, 2006.
[24] R. Murthy, A. Das, D. Popa, “Multiscale Robotics Framework for MEMS Assembly,” IEEE, 2006.
[25] 蘇振山,“ 微工廠影像伺服定位控制應用之研究,” 國立成功大學機械工程學系碩士論文, July, 2007.
[26] 陳慶昌,“ 影像自動化微組裝工廠之發展,” 國立成功大學機械工程學系碩士論文, July, 2006.
[27] 林光彥, “ 以DSP實現圖形識別於微物件操縱系統之發展,” 國立成功大學機械工程學系碩士論文, July, 2005
[28]陳泰成, “ 微組裝系統影像伺服建模與測試,” 國立成功大學機械工程學系碩士論文, June, 2002.