簡易檢索 / 詳目顯示

研究生: 許仁豪
Hsu, Jen-Hao
論文名稱: N-乙烯甲醯胺丙烯酸共聚物作為水性黏著劑應用於鋰離子電池之矽負極
Applications of Poly(N-vinyl formamide-co-acrylic acid) as Water-soluble Binders in Silicon Anode of Lithium Ion Battery
指導教授: 陳炳宏
Chen, Bing Hung
共同指導教授: 侯聖澍
Hou, Sheng Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 77
中文關鍵詞: 聚(N-乙烯甲醯胺)聚丙烯酸鋰黏著劑矽負極
外文關鍵詞: LiPAA, PNVF, Si anode, copolymer
相關次數: 點閱:49下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I Extended Abstract II 致謝 IX 目錄 X 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1-1 引言 1 1-2 鋰離子電池 2 1-3 正極材料 3 1-4 負極材料 4 1-5 電解質 4 1-5-1 液態電解質 5 1-5-2 膠固態電解質 6 1-6 固態電解質介面 6 第二章 研究動機 7 第三章 文獻回顧 8 3-1 矽負極概況 8 3-2 奈米中空材料 (Silicon hollow structure) 9 3-3 奈米孔洞材料 (Porous structure) 10 3-4 黏著劑 11 3-4-1 線性高分子黏著劑 (Linear polymer) 12 3-4-2 交聯高分子黏著劑 (Cross-linked polymer) 14 3-4-3 導電性高分子 (Conductive polymer) 15 3-5 矽奈米管、線材 16 3-5-1 奈米線 (Nanowire) 16 3-5-2 奈米管 (Nanotube) 17 3-6 矽碳複合材料 18 3-6-1 外殼-內核結構 18 3-6-2 蛋黃-蛋殼結構 20 3-6-3 蛋黃式中孔碳材料 21 3-6-4 嵌入式結構 21 3–7 電解質添加劑 22 第四章 實驗步驟與儀器設備 24 4-1 實驗藥品與儀器設備 24 4-2 聚(N-乙烯甲醯胺)之合成 26 4-3 聚(N-乙烯甲醯胺-共聚-丙烯酸)之合成 26 4-4 電池極片製作方式 27 4-5 鈕扣型電池組裝方式 28 4-6 電化學能力測量 29 4-7 電化學阻抗頻譜法 (Electrochemistry Impedance Spectroscopy, EIS) 30 4-8 循環伏安法 (Cyclic Voltammetry, CV) 32 4-9 核磁共振光譜 (Nuclear Magnetic Resonance, NMR) 33 4-10 掃描式電子顯微鏡 (Scanning Electron Microscopy, SEM) 34 4-11 傅立葉轉換紅外線光譜 (Fourier Transform Infrared Spectroscopy, FTIR) 34 第五章 結果與討論 36 5-1 P(NVFx-co-AAy)用於矽負極半電池 36 5-1-1 NVF-co-AA共聚物的組成比例與NMR圖檢定 36 5-1-2 N-乙烯甲醯胺-丙烯酸共聚物之循環壽命圖比較 39 5-1-3 P(NVF50-co-AA50)用於矽負極之比例測試 44 5-1-4 P(NVF50-co-AA50)在充放電反應發現的現象與討論 46 5-1-5 P(NVF50-co-AA50)應用於負極之SEM圖 50 5-1-6 P(NVF50-co-AA50)電化學阻抗頻譜 (EIS) 54 5-1-7 P(NVF50-co-AA50)循環伏安圖 (CV) 56 5-1-8 添加劑FEC對AA50的半電池效用 59 5-2 P(NVF50-co-AA50)用於矽負極全電池 60 5-2-1 矽負極全電池的前處理 60 5-2-2 全電池之循環測試和充放電測試 62 第六章 結論 68 參考文獻 70

    1. Li, J.; Dahn, J. R., An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si. Journal of The Electrochemical Society 2007, 154 (3), A156.
    2. Yoshino, A., Development of the lithium-ion battery and recent technological trends. In Lithium-ion batteries, Elsevier: 2014; pp 1-20.
    3. Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G., The lithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews 2018, 89, 292-308.
    4. Guyomard, D.; Tarascon, J. M., ROCKING-CHAIR OR LITHIUM-ION RECHARGEABLE LITHIUM BATTERIES. Adv. Mater. 1994, 6 (5), 408-412.
    5. Murphy, D., Materials for advanced batteries. Springer Science & Business Media: 2013; Vol. 2.
    6. Scrosati, B., Lithium rocking chair batteries: an old concept? Journal of The Electrochemical Society 1992, 139 (10), 2776.
    7. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science 2011, 4 (9), 3243-3262.
    8. Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G., Li-ion battery materials: present and future. Materials today 2015, 18 (5), 252-264.
    9. Parikh, P.; Sina, M.; Banerjee, A.; Wang, X.; D’Souza, M. S.; Doux, J.-M.; Wu, E. A.; Trieu, O. Y.; Gong, Y.; Zhou, Q.; Snyder, K.; Meng, Y. S., Role of Polyacrylic Acid (PAA) Binder on the Solid Electrolyte Interphase in Silicon Anodes. Chemistry of Materials 2019, 31 (7), 2535-2544.
    10. Marcinek, M.; Syzdek, J.; Marczewski, M.; Piszcz, M.; Niedzicki, L.; Kalita, M.; Plewa-Marczewska, A.; Bitner, A.; Wieczorek, P.; Trzeciak, T., Electrolytes for Li-ion transport–Review. Solid State Ionics 2015, 276, 107-126.
    11. Song, J.; Wang, Y.; Wan, C. C., Review of gel-type polymer electrolytes for lithium-ion batteries. Journal of power sources 1999, 77 (2), 183-197.
    12. Verma, P.; Maire, P.; Novák, P., A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta 2010, 55 (22), 6332-6341.
    13. Wang, A.; Kadam, S.; Li, H.; Shi, S.; Qi, Y., Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Computational Materials 2018, 4 (1).
    14. Obrovac, M. N.; Christensen, L., Structural Changes in Silicon Anodes during Lithium Insertion/Extraction. Electrochemical and Solid-State Letters 2004, 7 (5), A93.
    15. Hatchard, T. D.; Dahn, J. R., In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon. Journal of The Electrochemical Society 2004, 151 (6), A838.
    16. Chon, M. J.; Sethuraman, V. A.; McCormick, A.; Srinivasan, V.; Guduru, P. R., Real-Time Measurement of Stress and Damage Evolution during Initial Lithiation of Crystalline Silicon. Physical Review Letters 2011, 107 (4), 045503.
    17. Beaulieu, L. Y.; Eberman, K. W.; Turner, R. L.; Krause, L. J.; Dahn, J. R., Colossal Reversible Volume Changes in Lithium Alloys. Electrochemical and Solid-State Letters 2001, 4 (9), A137.
    18. Hertzberg, B.; Benson, J.; Yushin, G., Ex-situ depth-sensing indentation measurements of electrochemically produced Si–Li alloy films. Electrochemistry Communications 2011, 13 (8), 818-821.
    19. Sethuraman, V. A.; Chon, M. J.; Shimshak, M.; Van Winkle, N.; Guduru, P. R., In situ measurement of biaxial modulus of Si anode for Li-ion batteries. Electrochemistry Communications 2010, 12 (11), 1614-1617.
    20. Li, H.; Huang, X.; Chen, L.; Zhou, G.; Zhang, Z.; Yu, D.; Jun Mo, Y.; Pei, N., The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature. Solid State Ionics 2000, 135 (1), 181-191.
    21. Limthongkul, P.; Jang, Y.-I.; Dudney, N. J.; Chiang, Y.-M., Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage. Acta Materialia 2003, 51 (4), 1103-1113.
    22. Bruce, P. G.; Scrosati, B.; Tarascon, J.-M., Nanomaterials for Rechargeable Lithium Batteries. Angewandte Chemie International Edition 2008, 47 (16), 2930-2946.
    23. Li, H., A High Capacity Nano-Si Composite Anode Material for Lithium Rechargeable Batteries. Electrochemical and Solid-State Letters 1999, 2 (11), 547.
    24. Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y., Size-Dependent Fracture of Silicon Nanoparticles During Lithiation. ACS Nano 2012, 6 (2), 1522-1531.
    25. Luo, W.; Chen, X.; Xia, Y.; Chen, M.; Wang, L.; Wang, Q.; Li, W.; Yang, J., Surface and Interface Engineering of Silicon-Based Anode Materials for Lithium-Ion Batteries. Advanced Energy Materials 2017, 7 (24), 1701083.
    26. Huang, X.; Yang, J.; Mao, S.; Chang, J.; Hallac, P. B.; Fell, C. R.; Metz, B.; Jiang, J.; Hurley, P. T.; Chen, J., Controllable Synthesis of Hollow Si Anode for Long-Cycle-Life Lithium-Ion Batteries. Advanced Materials 2014, 26 (25), 4326-4332.
    27. Lv, Q.; Liu, Y.; Ma, T.; Zhu, W.; Qiu, X., Hollow Structured Silicon Anodes with Stabilized Solid Electrolyte Interphase Film for Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2015, 7 (42), 23501-23506.
    28. Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L.; Nix, W. D.; Cui, Y., Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life. Nano Letters 2011, 11 (7), 2949-2954.
    29. Lee, J.-I.; Park, S., High-performance porous silicon monoxide anodes synthesized via metal-assisted chemical etching. Nano Energy 2013, 2 (1), 146-152.
    30. Xing, A.; Tian, S.; Tang, H.; Losic, D.; Bao, Z., Mesoporous silicon engineered by the reduction of biosilica from rice husk as a high-performance anode for lithium-ion batteries. RSC Advances 2013, 3 (26), 10145.
    31. Sailor, M. J., Porous silicon in practice: preparation, characterization and applications. John Wiley & Sons: 2012.
    32. Li, X.; Gu, M.; Hu, S.; Kennard, R.; Yan, P.; Chen, X.; Wang, C.; Sailor, M. J.; Zhang, J.-G.; Liu, J., Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nature communications 2014, 5 (1), 1-7.
    33. Kim, H.; Cho, J., Superior lithium electroactive mesoporous Si@ Carbon core− shell nanowires for lithium battery anode material. Nano letters 2008, 8 (11), 3688-3691.
    34. Liu, W.-R.; Yang, M.-H.; Wu, H.-C.; Chiao, S. M.; Wu, N.-L., Enhanced Cycle Life of Si Anode for Li-Ion Batteries by Using Modified Elastomeric Binder. Electrochemical and Solid-State Letters 2005, 8 (2), A100.
    35. Li, J.; Christensen, L.; Obrovac, M. N.; Hewitt, K. C.; Dahn, J. R., Effect of Heat Treatment on Si Electrodes Using Polyvinylidene Fluoride Binder. Journal of The Electrochemical Society 2008, 155 (3), A234.
    36. Zou, F.; Manthiram, A., A Review of the Design of Advanced Binders for High‐Performance Batteries. Advanced Energy Materials 2020, 10 (45), 2002508.
    37. Chen, L.; Xie, X.; Xie, J.; Wang, K.; Yang, J., Binder effect on cycling performance of silicon/carbon composite anodes for lithium ion batteries. Journal of Applied Electrochemistry 2006, 36 (10), 1099-1104.
    38. Bridel, J. S.; AzaïS, T.; Morcrette, M.; Tarascon, J. M.; Larcher, D., Key Parameters Governing the Reversibility of Si/Carbon/CMC Electrodes for Li-Ion Batteries†. Chemistry of Materials 2010, 22 (3), 1229-1241.
    39. Magasinski, A.; Zdyrko, B.; Kovalenko, I.; Hertzberg, B.; Burtovyy, R.; Huebner, C. F.; Fuller, T. F.; Luzinov, I.; Yushin, G., Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid. ACS Applied Materials & Interfaces 2010, 2 (11), 3004-3010.
    40. Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G., A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries. Science 2011, 334 (6052), 75-79.
    41. Parikh, P.; Sina, M.; Banerjee, A.; Wang, X.; D’Souza, M. S.; Doux, J.-M.; Wu, E. A.; Trieu, O. Y.; Gong, Y.; Zhou, Q., Role of polyacrylic acid (PAA) binder on the solid electrolyte interphase in silicon anodes. Chemistry of Materials 2019, 31 (7), 2535-2544.
    42. Zhang, G.; Yang, Y.; Chen, Y.; Huang, J.; Zhang, T.; Zeng, H.; Wang, C.; Liu, G.; Deng, Y., A Quadruple‐Hydrogen‐Bonded Supramolecular Binder for High‐Performance Silicon Anodes in Lithium‐Ion Batteries. Small 2018, 14 (29), 1801189.
    43. Nguyen, C. C.; Yoon, T.; Seo, D. M.; Guduru, P.; Lucht, B. L., Systematic Investigation of Binders for Silicon Anodes: Interactions of Binder with Silicon Particles and Electrolytes and Effects of Binders on Solid Electrolyte Interphase Formation. ACS Applied Materials & Interfaces 2016, 8 (19), 12211-12220.
    44. Guo, R.; Zhang, S.; Ying, H.; Yang, W.; Wang, J.; Han, W.-Q., New, effective, and low-cost dual-functional binder for porous silicon anodes in lithium-ion batteries. ACS applied materials & interfaces 2019, 11 (15), 14051-14058.
    45. Kwon, T.-w.; Jeong, Y. K.; Deniz, E.; AlQaradawi, S. Y.; Choi, J. W.; Coskun, A., Dynamic cross-linking of polymeric binders based on host–guest interactions for silicon anodes in lithium ion batteries. ACS nano 2015, 9 (11), 11317-11324.
    46. Bie, Y.; Yang, J.; Lu, W.; Lei, Z.; Nuli, Y.; Wang, J., A facile 3D binding approach for high Si loading anodes. Electrochimica Acta 2016, 212, 141-146.
    47. Yuca, N.; Çolak, Ü., A facile and functional process to enhance electrochemical performance of silicon anode in lithium ion batteries. Electrochimica Acta 2016, 222, 1538-1544.
    48. Karkar, Z.; Guyomard, D.; Roué, L.; Lestriez, B., A comparative study of polyacrylic acid (PAA) and carboxymethyl cellulose (CMC) binders for Si-based electrodes. Electrochimica Acta 2017, 258, 453-466.
    49. He, J.; Zhang, L., Polyvinyl alcohol grafted poly (acrylic acid) as water-soluble binder with enhanced adhesion capability and electrochemical performances for Si anode. Journal of alloys and compounds 2018, 763, 228-240.
    50. Li, J.; Zhang, G.; Yang, Y.; Yao, D.; Lei, Z.; Li, S.; Deng, Y.; Wang, C., Glycinamide modified polyacrylic acid as high-performance binder for silicon anodes in lithium-ion batteries. Journal of Power Sources 2018, 406, 102-109.
    51. 吳陳宗, 水溶性聚(N-乙烯甲醯胺)黏著劑應用於鋰離子電池之矽負極. 2020.
    52. Koo, B.; Kim, H.; Cho, Y.; Lee, K. T.; Choi, N.-S.; Cho, J., A Highly Cross-Linked Polymeric Binder for High-Performance Silicon Negative Electrodes in Lithium Ion Batteries. Angewandte Chemie 2012, 124 (35), 8892-8897.
    53. Song, J.; Zhou, M.; Yi, R.; Xu, T.; Gordin, M. L.; Tang, D.; Yu, Z.; Regula, M.; Wang, D., Interpenetrated Gel Polymer Binder for High-Performance Silicon Anodes in Lithium-ion Batteries. Advanced Functional Materials 2014, 24 (37), 5904-5910.
    54. Xu, Z.; Yang, J.; Zhang, T.; Nuli, Y.; Wang, J.; Hirano, S.-i., Silicon microparticle anodes with self-healing multiple network binder. Joule 2018, 2 (5), 950-961.
    55. Wei, L.; Chen, C.; Hou, Z.; Wei, H., Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries. Scientific Reports 2016, 6 (1), 19583.
    56. Zeng, W.; Wang, L.; Peng, X.; Liu, T.; Jiang, Y.; Qin, F.; Hu, L.; Chu, P. K.; Huo, K.; Zhou, Y., Enhanced ion conductivity in conducting polymer binder for high‐performance silicon anodes in advanced lithium‐ion batteries. Advanced Energy Materials 2018, 8 (11), 1702314.
    57. Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y., High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology 2008, 3 (1), 31-35.
    58. Cui, L.-F.; Ruffo, R.; Chan, C. K.; Peng, H.; Cui, Y., Crystalline-Amorphous Core−Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes. Nano Letters 2009, 9 (1), 491-495.
    59. Song, T.; Xia, J.; Lee, J.-H.; Lee, D. H.; Kwon, M.-S.; Choi, J.-M.; Wu, J.; Doo, S. K.; Chang, H.; Park, W. I.; Zang, D. S.; Kim, H.; Huang, Y.; Hwang, K.-C.; Rogers, J. A.; Paik, U., Arrays of Sealed Silicon Nanotubes As Anodes for Lithium Ion Batteries. Nano Letters 2010, 10 (5), 1710-1716.
    60. Park, M.-H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J., Silicon Nanotube Battery Anodes. Nano Letters 2009, 9 (11), 3844-3847.
    61. Dou, F.; Shi, L.; Chen, G.; Zhang, D., Silicon/carbon composite anode materials for lithium-ion batteries. Electrochemical Energy Reviews 2019, 2 (1), 149-198.
    62. Xu, W.; Flake, J. C., Composite Silicon Nanowire Anodes for Secondary Lithium-Ion Cells. Journal of The Electrochemical Society 2010, 157 (1), A41.
    63. Hwa, Y.; Kim, W.-S.; Hong, S.-H.; Sohn, H.-J., High capacity and rate capability of core–shell structured nano-Si/C anode for Li-ion batteries. Electrochimica Acta 2012, 71, 201-205.
    64. Liu, Y.; Wen, Z. Y.; Wang, X. Y.; Hirano, A.; Imanishi, N.; Takeda, Y., Electrochemical behaviors of Si/C composite synthesized from F-containing precursors. Journal of Power Sources 2009, 189 (1), 733-737.
    65. Shao, D.; Tang, D.; Mai, Y.; Zhang, L., Nanostructured silicon/porous carbon spherical composite as a high capacity anode for Li-ion batteries. Journal of Materials Chemistry A 2013, 1 (47), 15068.
    66. Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C.; Cui, Y., A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes. Nano Letters 2012, 12 (6), 3315-3321.
    67. Yang, J.; Wang, Y.-X.; Chou, S.-L.; Zhang, R.; Xu, Y.; Fan, J.; Zhang, W.-X.; Kun Liu, H.; Zhao, D.; Xue Dou, S., Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries. Nano Energy 2015, 18, 133-142.
    68. Zhao, X.; Hayner, C. M.; Kung, M. C.; Kung, H. H., In-Plane Vacancy-Enabled High-Power Si-Graphene Composite Electrode for Lithium-Ion Batteries. Advanced Energy Materials 2011, 1 (6), 1079-1084.
    69. Schroder, K.; Alvarado, J.; Yersak, T. A.; Li, J.; Dudney, N.; Webb, L. J.; Meng, Y. S.; Stevenson, K. J., The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes. Chemistry of Materials 2015, 27 (16), 5531-5542.
    70. Choi, N.-S.; Yew, K. H.; Lee, K. Y.; Sung, M.; Kim, H.; Kim, S.-S., Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. Journal of Power Sources 2006, 161 (2), 1254-1259.
    71. Kröner, M.; Dupuis, J.; Winter, M., N‐Vinylformamide—Syntheses and Chemistry of a Multifunctional Monomer. Journal für praktische Chemie 2000, 342 (2), 115-131.
    72. Gu, L.; Zhu, S.; Hrymak, A., Acidic and basic hydrolysis of poly (N‐vinylformamide). Journal of applied polymer science 2002, 86 (13), 3412-3419.
    73. Barai, A.; Chouchelamane, G. H.; Guo, Y.; McGordon, A.; Jennings, P., A study on the impact of lithium-ion cell relaxation on electrochemical impedance spectroscopy. Journal of Power Sources 2015, 280, 74-80.
    74. Allen J. Bard, L. R. F., ELECTROCHEMICAL METHODS Fundamentals and Applications. 2001.
    75. Lasia, A., Electrochemical Impedance Spectroscopy and its Applications. Kluwer Academic Publishers: pp 143-248.
    76. Kim, T.; Choi, W.; Shin, H.-C.; Choi, J.-Y.; Kim, J. M.; Park, M.-S.; Yoon, W.-S., Applications of Voltammetry in Lithium Ion Battery Research. Journal of Electrochemical Science and Technology 2020, 11 (1), 14-25.
    77. Diehl, B., Chapter 1 - Principles in NMR Spectroscopy. In NMR Spectroscopy in Pharmaceutical Analysis, Holzgrabe, U.; Wawer, I.; Diehl, B., Eds. Elsevier: Amsterdam, 2008; pp 1-41.
    78. Goldstein, J. I.; Newbury, D. E.; Echlin, P.; Joy, D. C.; Lyman, C. E.; Lifshin, E.; Sawyer, L.; Michael, J. R., Scanning Electron Microscopy and X-Ray Microanalysis. Springer Science+Business Media, LLC: 2003.
    79. Ausili, A.; Sánchez, M.; Gómez-Fernández, J. C., Attenuated total reflectance infrared spectroscopy: A powerful method for the simultaneous study of structure and spatial orientation of lipids and membrane proteins. Biomedical Spectroscopy and Imaging 2015, 4 (2), 159-170.
    80. Komaba, S.; Okushi, K.; Ozeki, T.; Yui, H.; Katayama, Y.; Miura, T.; Saito, T.; Groult, H., Polyacrylate Modifier for Graphite Anode of Lithium-Ion Batteries. Electrochemical and Solid-State Letters 2009, 12 (5), A107.
    81. Pieczonka, N. P. W.; Borgel, V.; Ziv, B.; Leifer, N.; Dargel, V.; Aurbach, D.; Kim, J.-H.; Liu, Z.; Huang, X.; Krachkovskiy, S. A.; Goward, G. R.; Halalay, I.; Powell, B. R.; Manthiram, A., Lithium Polyacrylate (LiPAA) as an Advanced Binder and a Passivating Agent for High-Voltage Li-Ion Batteries. Advanced Energy Materials 2015, 5 (23), 1501008.
    82. Chevrier, V.; Dahn, J. R., First principles model of amorphous silicon lithiation. Journal of the Electrochemical Society 2009, 156 (6), A454.
    83. Key, B.; Bhattacharyya, R.; Morcrette, M.; Seznec, V.; Tarascon, J.-M.; Grey, C. P., Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. Journal of the American Chemical Society 2009, 131 (26), 9239-9249.
    84. Lee, S.-J.; Lee, J.-K.; Chung, S.-H.; Lee, H.-Y.; Lee, S.-M.; Baik, H.-K., Stress effect on cycle properties of the silicon thin-film anode. Journal of Power Sources 2001, 97-98, 191-193.
    85. Pharr, M.; Suo, Z.; Vlassak, J. J., Measurements of the Fracture Energy of Lithiated Silicon Electrodes of Li-Ion Batteries. Nano Letters 2013, 13 (11), 5570-5577.
    86. Choi, Y. S.; Pharr, M.; Kang, C. S.; Son, S.-B.; Kim, S. C.; Kim, K.-B.; Roh, H.; Lee, S.-H.; Oh, K. H.; Vlassak, J. J., Microstructural evolution induced by micro-cracking during fast lithiation of single-crystalline silicon. Journal of Power Sources 2014, 265, 160-165.
    87. Son, J.; Vo, T. N.; Cho, S.; Preman, A. N.; Kim, I. T.; Ahn, S.-k., Acrylic random copolymer and network binders for silicon anodes in lithium-ion batteries. Journal of Power Sources 2020, 458, 228054.
    88. Loveridge, M. J.; Lain, M. J.; Johnson, I. D.; Roberts, A.; Beattie, S. D.; Dashwood, R.; Darr, J. A.; Bhagat, R., Towards High Capacity Li-ion Batteries Based on Silicon-Graphene Composite Anodes and Sub-micron V-doped LiFePO4 Cathodes. Scientific Reports 2016, 6 (1), 37787.
    89. Jiang, T.; Zhang, S.; Qiu, X.; Zhu, W.; Chen, L., Preparation and characterization of silicon-based three-dimensional cellular anode for lithium ion battery. Electrochemistry communications 2007, 9 (5), 930-934.
    90. Liu, W.-R.; Guo, Z.-Z.; Young, W.-S.; Shieh, D.-T.; Wu, H.-C.; Yang, M.-H.; Wu, N.-L., Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive. Journal of power sources 2005, 140 (1), 139-144.

    無法下載圖示 校內:2026-07-25公開
    校外:2026-07-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE