| 研究生: |
郭豪翔 Kuo, Hao-Hsiang |
|---|---|
| 論文名稱: |
結合撓性結構與音圈馬達之振動獵能與控制研究 Vibration Energy Harvesting and Control of Compliant Structures with Voice Coil Actuators |
| 指導教授: |
陳國聲
Chen, Kuo-Shen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 振動獵能 、振動抑制 、電磁獵能 、音圈馬達 、H∞控制器 |
| 外文關鍵詞: | Vibration harvesting, Vibration suppression, electromagnetic energy harvest, Voice coil motor, H∞ controller |
| 相關次數: | 點閱:152 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
振動普遍存在於周遭環境中,可能經由人群的走動、車輛移動與設備的運轉等因素所造成,振動抑制的目的為降低其結構設備受到振動干擾的影響,如何抑制結構物與產品上的振動為備受關注之重點。本論文主要研究目的為建立一組結合振動式獵能與振動控制的雙鉗樑實驗系統,希望藉由振動抑制的方法達到降低結構設備受到振動干擾的影響,同時能有效回收環境中的振動能並再作有效利用。針對現今許多振動抑制的方法,本研究針對撓性結構上增加阻尼以及閉迴路控制的方法,利用音圈馬達可做為致動器與電磁發電的特性,分別進行振動獵能與振動控制的討論。在振動獵能方面,本論文利用獵能端音圈外接可變電阻,藉由改變負載觀察整體系統的電能輸出行為,並且與等效模型之發電響應結果進行比較。結果顯示系統的最大輸出功率之負載電阻需與線圈電阻值相等。在振動控制方面,我們設計PID控制器與強健控制中的H∞控制器,對於實驗系統進行定位控制等實驗。實驗結果顯示,不論是最大超越量與安定時間,H∞控制器的性能皆優於PID控制器,同時也有著較為穩定的上升過程;而在強健性方面,本研究所設計的H∞控制器在系統參數不確定下之暫態性能也是優於PID控制器,同時具有相當的強健性能力。整體而言,本文對於電磁獵能脫離微尺度的獵能效果有初步的了解,同時也利用相對簡單的機構探討所設計的強健控制器之定位控制能力,對於未來不論是電磁獵能裝置或是控制器的進一步設計皆能有實質意義。
Structural vibration induced by environmental excitations has traditionally been an important concern for structural integrity and device performance over decades. Recently, with the advance in sensor network technology, the utilization of environmental vibration gradually becomes an essential research issue. In this work, we designed a voice coil actuated compliant structure for addressing the above two issues. For the first part, by treating the voice coil as an energy harvester, it is possible to extract vibration energy into electric power. By connecting the system with rectifier, the energy can be stored in a super capacitor. The optimal conversion efficiency is observed as the impedance of the external loading matching the internal resistance of the system. Furthermore, the correlation between the energy extraction and the resulted damping ratio is also found. This implies that it is possible to treat the system as both an energy harvester and a semi-active damper. For the second part, structural control scheme such as H∞ and PID controllers are designed for investigating the characteristics of these schemes using this relatively simple platform. Essential performance testing such as bandwidth and robustness, as well as key parameter studies, are performed. We believe that the conclusion drawn from both issues should be useful for future related applications such as vibration control of precision motion systems and waste energy recovery in machinery.
[1]T. H. Cheng, and I. K. Oh, “Vibration Suppression of Flexible Beam Using Electromagnetic Shunt Damper,” IEEE Transactions on Magnetics, vol. 45, pp. 2758-2761, June 2009.
[2]中華民國鋼結構協會
http://www.tiscnet.org.tw/index.php
[3]陳韋如, 有限元素分析於撓性長距離移動系統之輸入修正設計與應用, 國立成功大學機械系碩士論文, 2011.
[4]T. H. Cheng, and I. K. Oh, “A current-flowing electromagnetic shunt damper for multi-mode vibration control of cantilever beams,” Smart Materials and Structures, vol. 18, 2009.
[5]S. Priya, "Advances in energy harvesting using low profile piezoelectric transducers," Journal of Electroceramics, vol. 19, pp. 165-182, Sep 2007.
[6]M. Mizuno and D. G. Chetwynd “Investigation of a resonance microgenerator,” J. Micromech. Microeng., vol. 13, pp.209-216, 2003
[7]H. Kulah and K. Najafi, “An electromagnetic micro power generator for low-frequency environmental vibrations,” Proc. 17th Int. Conf. MEMS, pp. 237 -240, 2004.
[8]E. Koukharenko, S. P. Beeby, M. J. Tudor, N. M. White , T. O'Donnell , C. Saha , S. Kulkarni and S. Roy “Microelectromechanical systems vibration powered electromagnetic generator for wireless sensor applications,” Microsyst. Technol., vol. 12, pp. 1071-1077, 2006.
[9]J. C. Shen, W. Y. Jywe, H. K. Chiang, and Y. L. Shu, “Precision tracking control of a piezoelectric-acuated system,” in Proceedings of the 15th Mediterranean Conference on Control & Automation, pp. 1-6, 2007.
[10]A.M. Abakumov, G.N. Miatov , “Control algorithms for active vibration isolation systems subject to random disturbances,” Journal of Sound and Vibration, Vol. 289, pp. 889-907, 2006.
[11]李哲維, 堆疊式壓電雙軸精密定位平台之設計、分析與控制, 國立成功大學機械系碩士論文, 2012
[12]S. Roundy, E. S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J. M. Rabaey, P. K. Wright, and V. Sundararajan, “Improving power output for vibration-based energy scavengers,” Institute of Electrical and Electronics Engineers Inc., vol. 4, pp. 28-36, January/March 2005.
[13]H. Külah and K. Najafi, “Energy Scavenging From Low-Frequency Vibrations by Using Frequency Up-Conversion for Wireless Sensor Applications,” Journal of IEEE Sensors, vol. 8, pp. 261-268, 2008.
[14]D. P. Arnold, “Review of Microscale Magnetic Power Generation,” IEEE Transactions on Magnetics, vol. 43, pp. 3940-3951, 2007.
[15]C. B. Williams and R. B. Yates, “Analysis of a micro-electric generator for microsystems,” Sensors and Actuators A: Physical 52.1, pp. 8-11, 1996.
[16]W. J. Li, P. H. W. Leong, T. C. H. Hong, H. Y. Wong and G. M. H. Chan, “Infrared signal transmission by a laser-micromachined vibration-induced power generator,” Proc. 43rd IEEE Midwest Symp. Circuits and Systems, Lansing, Michigan, pp. 236-239, 2000.
[17]M. E. Hami, P. G. Jones, N. M. White, M. Hill, S. Beeby, E. James, A. D. Brown and J. N. Ross, “Design and fabrication of a new vibration-based electromechanical power generator,” Sensors and Actuators A, vol. 92, pp. 335-342, 2001.
[18]P. G. Jones, M. J. Tudor, S. P. Beeby and N. M. White, “An electromagnetic, vibration-powered generator for intelligent sensor systems,” Sensors and Actuators A, vol. 110, pp. 344-349, 2004.
[19]S. P. Beeby, R. N. Torah, M J Tudor, P Glynne-Jones, T O’Donnell, C R Saha and S Roy, “A micro electromagnetic generator for vibration energy harvesting,” J. Micromech. Microeng, vol. 17, pp. 1257-1265, 2007.
[20]W. S. Huang, K. E. Tzeng, M. C. Cheng and R. S. Huang, “A silicon MEMS micro power Generator for wearable micro devices,” Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch’eng Hsuch K’an, vol. 30, pp. 133-140, 2007.
[21]K. Sasaki, Y. Osaki, and J. Okazaki, H. Hosoka, and K. Itao, “Vibration-Based Automatic Power-Generation System,” Micosyst Technol, vol. 11, pp. 965-969, 2005.
[22]D. Spreemann, Y. Manoli, B. Folkmer, and D. Mintenbeck, “Non-resonant Vibration Conversion,” J. Micromech. Microeng, vol. 16, pp. 169-173, 2006.
[23]Y. Yoshitake, T. Ishibashi, and A. Fukushima, “Vibration Control and Electricity Generating Device Using a Number of Hula-hoops and Generators,” Journal of Sound and Vibration, 275(1-2), pp. 77-78, 2004.
[24]M. Umeda, K. Nakamura, and S. Ueha, “Analysis of the transformation of mechanical impact energy to electric energy using piezoelectric vibrator,” Japanese Journal of Applied Physics, vol. 35, pp. 3267-3273, 1996.
[25]N. W. Hagood, D. C. Roberts, L. Saggere, K. S. Breuer, K. S. Chen, J. A. Carretero, H. Li, R. Mlcak, S. Pulitzer, M. A. Schmidt, S. Mark Spearing, and Y.-H. Su, “Micro hydraulic transducer technology for actuation and power generation,” in Smart Structures and Materials 2000 - Smart Structures and Integrated Systems. vol. 3985 Newport Beach, CA, USA, pp. 680-688, 2000.
[26]C. K. J. Kymissis, J. Paradiso, N. Gershenfeld, “Parasitic Power Harvesting in Shoes,” in Proc. of the Second IEEE International Conference on Wearable Computing, 1998.
[27]H. B. Fang, J. Q. Liu, Z. Y. Xu, L. Dong, L. Wang, D. Chen, B. C. Cai and Y. Liu, “Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting,” Microelectron. Journal, vol. 37, pp. 1280-1284, 2006.
[28]http://www.nippon.com/hk/views/b01502/
[29]林聖傑,混合式微獵能器之概念設計分析與巨觀的實驗驗證,國立成功大學碩士論文,2008.
[30]黃信瀚,新型PVDF壓電獵能器之設計分析與實驗研究,國立成功大學碩士論文,2009.
[31]G. C. Marano, S. Sgobba, R. Greco and M. Mezzina, “Robust optimum design of tuned mass dampers devices in random vibrations mitigation,” Joumal of Souned and Vibration, vol. 313, pp. 472-492, 2008.
[32]Y. Sung, W. Singhose, “Robustness analysis of input shaping commands for two-mode flexible systems,” IET Control Theory and Applications, pp.722-730, 2008.
[33]George Zames, “Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses,” IEEE Trans. Automatic Control, vol. 26, pp. 301–320, 1981.
[34]J.C. Doyle, K. Glover, P.P. Khar Gonekar and B.A. Francis, “State-Space Solutions to Standard H2 and H∞ Control Problems,” IEEE Trans. Automatic Control, vol. 34, pp. 831-847, 1989.
[35]T. L. Hsian, Y. Y. Sun, M. C. Tsai, “Speed Controller Design Using Singular H Control,” Industrial Automation and Control:Emerging Technologies, Taipei, pp. 632-636, 1995.
[36]林韋志, 具有H∞強健性之模糊模式追蹤控制, 中原大學碩士論文, 2001.
[37]林品宏, PID迴路整型及其在撓性臂定位控制之應用, 國立成功大學碩士論文, 2003.
[38]郭建賢, 立式主動磁浮軸承系統之強健控制與分析, 國立成功大學碩士論文, 2005.
[39]呂育儒, 倒單擺系統模型之建立與控制, 國立台灣大學碩士論文, 2007.
[40]P. C. Chen and M. C. Shih, “Robust Control of a Novel Active Pneumatic Vibration Isolator through Floor Vibration Observer,” Journal of Vibration and Control, vol. 17, pp. 1325-1336, August 2011.
[41]J. Lian and J. Zhao. “Robust H-infinity integral sliding mode control for a class of uncertain switched nonlinear systems,” Journal of Control Theory and Applications, vol 8, pp. 521-526, 2010.
[42]紹英哲, 適應性振動吸收器之設計與分析, 國立雲林科技大學碩士論文, 2006.
[43]Q. Xu and Y. Li, “Global sliding mode-based tracking control of a piezo-driven XY micropositioning stage with unmodeled hysteresis,” in Intelligent Robots and Systems on IEEE/RSJ International Conference, St. Louis, USA, pp. 755-760, October 11-15, 2009.
[44]C. M. Lin and Y. F. Peng. “Adaptive CMAC-based supervisory control for uncertain nonlinear systems,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 34, pp. 1248-1260, 2004.
[45]H. Abid, M. Chtourou, A. Toumi, “Robust Fuzzy Sliding Mode Controller for Discrete Nonlinear Systems,” International Journal of Computers, Communications & Control, vol. 3, no. 1, pp. 6-20, 2008.
[46]林育川, 音圈(Voice Coil)馬達簡介, 機械工業雜誌, 1999.
[47]A. R. Hambley, Electrical Engineering Principles and Applications, 5rd ed. Pearson Education, 2008.
[48]S. S. Rao, Mechanical vibrations, 4th ed. N.J: Pearson Education, 2004.
[49]詹森, 自動控制系統, 鼎茂圖書, 台北, 2007.
[50]G. A. Lesieutre, G. K. Ottman, and H. F. Hofmann, “Damping as a result of piezoelectric energy harvesting,” Journal of Sound and Vibration, vol. 269, pp. 991-1001, Jan 2004.
[51]H. Kim, S. Priya, and K. Uchino, “Modeling of piezoelectric energy harvesting using cymbal transducers,” Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 45, pp. 5836-5840, Jul 2006.
[52]T. Christen and M. W. Carlen, “Theory of ragone plots,” Elsevier Sequoia SA, Lausanne, Switzerland, vol. 91, pp. 210-216, 2000.
[53]林志明, 基本電路學實習教材, 儒林圖書, 1988.
[54]W. T. Thomson and M. D. Dahleh, Theory of Vibration with Applications, 5th ed. Prentice-Hall, 1998.
[55]X. Cao, W. Chang, Y. King, and Y. Lee,“Electromagnetic Energy Harvesting Circuit With Feedforward and Feedback DC–DC PWM Boost Converter for Vibration Power Generator System,” IEEE Transactions on Power Electronics, vol. 22, March 2007.
[56]廖允智, 振動獵能電路設計及其於無線感測網路之應用, 國立成功大學碩士論文, 2009.
[57]超級電容應用
http://en.wikipedia.org/wiki/Electric_double-layer_capacitor
[58]K. Zhou and J. C. Doyle, Essentials of Robust Control, Prentice Hall,1997.
[59]楊憲東, 精密機械控制原理與模擬, 全華圖書, 1998.
[60]曾仲熙, 控制器設計與模擬範例, 東華書局, 2011.
[61]R. D. Blevins, Formulas for Natural Frequency and Mode Shape, 2nd ed, 1984.