簡易檢索 / 詳目顯示

研究生: 陳瀚林
Chen, Han-Lin
論文名稱: 鈮酸鋰長週期平面波導光柵濾波器
Long Period Waveguide Grating Filters on Lithium Niobate
指導教授: 莊文魁
Chuang, Wen-Kuei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 89
中文關鍵詞: 光波導質子交換長週期光柵長週期波導濾波器藍移
外文關鍵詞: proton-exchange, long period grating, long period waveguide grating, blue shift, optical waveguides
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在光纖通訊發展中,已經有許多利用波導與光柵來當作濾波器的研究,且根據不同的光柵週期參數便可以選擇特定訊號,以達成濾波效果。而相較於短週期的傳統布拉格光柵 (bragg grating),長週期光柵在製程上更為簡單,且為了達到更佳的雜訊抑制效果,長週期光纖光柵 (long-period fiber grating,LPFG)進而被廣泛研究且應用於光纖通訊領域中。然而,長週期光纖光柵卻有材料方面以及幾何形狀上的限制,光纖本身不能做太小之外,成本也相對高,很難達成微縮與量產,而為了滿足元件積體化的需求,長週期波導光柵 (long-period waveguide grating,LPWG)濾波器被提出,利用波導材料設計與選擇上的靈活性,提供了更多光學方面的應用。
    在本論文實驗中,我們於z-cut的鈮酸鋰 (z-cut Lithium Niobate,LiNbO3)基板上,使用硬脂酸,且溫度280℃,分別交換4小時製作批覆層以及交換2小時製作波導層。並在完成兩次質子交換 (two-step proton-exchange)後,利用稜鏡耦合技術測得兩層折射率,再透過MATLAB程式求解超越波導方程式 (transcendental waveguide equations)並設計出光柵週期 Λ=50μm 的長度。接著利用三種不同的製作方式來完成光柵,其一同樣利用質子交換方式,以280℃交換0.5小時來完成相位光柵;其二是利用S1813光阻,經由標準黃光微影完成光阻波紋光柵;最後則是利用蒸鍍沉積銀金屬來完成銀波紋光柵。
    此三種元件,在透過近場 (near-field)光纖對準量測後,結果顯示相位光柵抑制頻帶對比度 (dip contrast)最大可到達31.188dB,半高全寬 (FWHM)約為0.77nm;光阻波紋光柵抑制頻帶對比度最大可到達28.44dB,半高全寬約為1.18nm;銀波紋光柵抑制頻帶對比度最大可到達8.15dB,半高全寬約為0.6nm。
    接著利用相位光柵探討溫度對於抑制頻帶的影響,在元件底部置入升溫器並施加溫度,且從室溫提高至40°C、50°C與60°C,並從頻譜分析儀中觀察到當溫度升高時,最大的抑制頻帶對比度會漸漸偏移至短波長地方,形成藍移 (blue shift)的現象。而三者光柵皆出現複數的抑制頻帶,我們判斷可能是MMI (multi mode interference)現象。

    Steric acid respectively maintained at 280°C for 4 and 2 hours on different occasions is used as processing parameters to fabricate cladding and waveguide layers on z-cut lithium niobate (LiNbO3) substrate. After completing the two-step proton exchange (PE), the refractive index of the two layers is ascertained by using the prism coupling technique, and with this information at hand, the grating period Λ of 50μm was deduced by solving a system of transcendental waveguide equations with MATLAB. There are three methods adopted to fabricate the grating. One of them is to utilize the proton-exchange method by directly diffusing ions into LiNbO3 to realize phase grating while keeping the solution melt at 280°C for 0.5 hours. Another one is relied on using a Shipley S1813 photoresist to complete the corrugation grating by standard lithography. The third approach is to deposit and subsequently pattern silver metal as corrugation grating.

    After measuring these three devices with the near-field optical alignment, the results show that the maximum dip contrast of the phase grating could reach up to 31.188 dB, and the corresponding full width at half maximum (FWHM) is about 0.77 nm. In comparison, the maximum dip contrast of the photoresist corrugation grating attains up to 28.44 dB with the FWHM of approximately 1.18nm. On the other hand, the maximum dip contrast ratio of the silver corrugation grating is determined to be around 8.15 dB with an FWHM of about 0.6nm. The thermal dependency of the phase grating is also probed by increasing the temperature from 40 to 60C and the corresponding dips have appeared to be blue-shifted. All of these devices have managed to demonstrate the multi-rejection bands, which is believably due to the multimode interference (MMI) phenomenon.

    中文摘要 I SUMMARY III INTRODUCTION IV EXPERIMENT V 2.1 The Design of Grating Pitch V 2.2 The Fabrication of the LPWGs VI RESULTS AND DISCUSSION VIII 3.1 The Transmission Spectra of the LPWG Phase Gratings VIII 3.2 The Transmission Spectra of the LPWG with Photoresist Corrugation Gratings IX 3.3 The Transmission Spectra of the LPWG with Silver Corrugation Gratings IX 3.4 Thermally-dependent Spectral Characteristic of LPWGs XI CONCLUSIONS XIII REFERENCES XIII 誌謝 XV 目錄 XVII 表目錄 XXII 圖目錄 XXIII 第一章 緒論 1 1.1 光通訊簡介 1 1.2 光纖光柵文獻回顧 4 1.3 研究動機 5 1.4 論文架構 6 第二章 鈮酸鋰光波導 8 2.1 鈮酸鋰材料特性 8 2.2 光波導架構與導論 10 2.2.1 光波導原理 12 2.2.2 入射光模態 15 2.3 鈮酸鋰光波導製作 16 2.3.1 質子交換法 (Proton Exchange,PE) 16 2.3.2 質子交換熱退火 (Annealed Proton Exchange,APE) 19 2.3.3 反質子交換法 (Reverse Proton Exchange,RPE) 20 第三章 週期性光柵 21 3.1 光纖光柵原理 21 3.2 短週期光纖光柵 (Short Period Fiber Grating) 23 3.3 長週期光纖光柵 (Long Period Fiber Grating,LPFG) 25 3.4 長週期波導光柵 (Long Period Waveguide Grating,LPWG) 27 第四章 表面電漿共振 31 4.1 漸逝波原理 (Theory of Evanescent Wave) 31 4.2 表面電漿共振 (Surface Plasmon Resonance,SPR) 31 4.2.1 金屬體積電漿基本性質 32 4.2.2 金屬表面電漿共振 33 4.2.3 表面電漿電磁場性質 35 4.2.4 光柵耦合式表面電漿現象 38 第五章 長週期波導光柵之元件設計與製作 39 5.1 元件製程概論 39 5.2 光柵週期設計 40 5.3 光柵長度設計 51 5.4 光罩圖形設計 53 5.5 元件製作流程 56 5.5.1 元件製作流程圖 56 5.5.2 元件製程步驟與結構示意圖 57 5.6 製作流程細節 63 5.6.1 鈮酸鋰基板前處理 63 5.6.2 濕式蝕刻參數 64 5.6.3 鍍膜製程參數 64 5.6.4 黃光旋塗曝光參數 65 5.6.5 質子交換與退火 66 5.6.6 元件拋光研磨 67 第六章 長週期波導光柵之元件量測與分析 69 6.1 光學量測機台與架構 69 6.2 長週期波導光柵頻譜分析 70 6.2.1 光阻波紋光柵穿透頻譜 70 6.2.2 相位光柵穿透頻譜 71 6.2.3 銀波紋光柵穿透頻譜 73 6.2.4 光柵穿透頻譜結果分析 74 6.2.5 長週期波導光柵之溫度頻譜分析 77 第七章 結論與未來工作 80 7.1 結果與討論 80 7.2 未來工作 82 參考文獻 84

    [1]S. E. Miller, "Integrated optics: An introduction." The Bell System Technical Journal, vol.48, pp.2059-2069, 1969.
    [2]https://sites.google.com/site/csapgroupc/home/history-of-optical-fibers.
    [3]Prentice Hall, and P. Kaiser, "Vibrational mode assignments," Applied Physics Letters, vol.23, 1973.
    [4]https://fobasics.blogspot.com/2012/07/fiber-attenuation.html
    [5]G. H. Chartier, P. Jaussaud, A. D. De Oliveira, and O. Parriaux, "Optical waveguides fabricated by electric-field controlled ion exchange in glass," Electronics Letters, vol.14, no.5, pp.132-134, 1978.
    [6]S. H. Kim, S. K. Kim, J. P. Shim, D. M. Geum, G. Ju, H. S. Kim, H. J. Lim, H. R. Lim, J. H. Han, S. Lee, et al, "Heterogeneous Integration Toward a Monolithic 3-D Chip Enabled by III–V and Ge Materials," IEEE J. Electron, vol.6, pp.579–587, 2018.
    [7]P. Kaur, A. Boes, G. Ren, T. G. Nguyen, G. Roelkens, and A. Mitchell, "Hybrid and heterogeneous photonic integration," APL Photonics, vol.6, 2021
    [8]K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication," Applied physics letters, vol.32, no.10, pp.647-649, 1978.
    [9]G. Meltz, W. W. Morey, and W. H. Glenn, "Formation of Bragg gratings in optical fibers by a transverse holographic method," Optics letters, vol.14, pp.823-825, 1989.
    [10]K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Applied Physics Letters, vol.62, pp.1035-1037, 1993.
    [11]K. O. Hill, and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," Journal of lightwave technology, vol.15, pp.1263-1276, 1997.
    [12]R. Kashyap, "Fiber Bragg Grating," San Diego: Academic Press, 1999.
    [13]T. Erdogan, "Fiber grating spectra," Journal of lightwave technology, vol.15, pp.1277-1294, 1997.
    [14]J. F. Nye, "Physical properties of crystals: their representation by tensors and matrices," Oxford university press, 1985.
    [15]S. Takahashi, and S. Shibata, "Thermal variation of attenuation for optical fibers," Journal of Non-Crystalline Solids, vol.30, pp.359-370, 1979.
    [16]R.S. Weis, and T. K. Gaylord, "Lithium Niobate: Summary of Physical Properties and Crystal Structure," Applied Physics Letters, vol.37, pp.171-203, 1985.
    [17]S. D. Smith, H. D. Riccius, and R. P. Edwin, "Refractive Indices of Lithium Niobate," Optics communications, vol. 17, pp.332-335, 1976.
    [18]https://www.researchgate.net/post/For_LiNbO3_plate_do_cutting_axis_angle_and_surface_finish_affect_the_propagation_direction_of_the_SAW2
    [19]Kwan, Alistair, J. Dudley, and E. Lantz, "Who really discovered Snell's law," Physics world, vol.15, no.4, p.64, 2002.
    [20]http://electronicsgurukulam.blogspot.com/2012/08/an-intro-to-waveguides-animation.html.
    [21]J. L. Jackel, C. E. Rice, and J. J. Veselka, "Proton Exchange for High‐index Waveguides in LiNbO3," Applied Physics Letters, 41, 7 pp. 607-608, 1982.
    [22]R. V. Schmidt, and I. P. Kaminow, "Metal‐diffused Optical Waveguides in LiNbO3," Applied Physics Letters, 25, pp.458-460, 1974.
    [23]E. Y. B. Pun, S. A. Zhao, K. K. Loi, and P. S. Chung, "Proton-exchanged LiNbO/sub 3/optical waveguides using stearic acid," IEEE photonics technology letters, vol. 3, no.11, pp. 1006-1008, Nov. 1991.
    [24]K. Yamamoto, and Tetsuo, "Characteristics of pyrophosphoric acid proton‐exchanged waveguides in LiNbO3," Journal of applied physics 70, 11, pp.6663-6668, 1991.
    [25]E. Y. B. Pun, K. K. Loi, and P. S. Chung, "Proton-exchanged optical waveguides in Z-cut LiNbO/sub 3/using phosphoric acid," Journal of lightwave technology, vol.11, no. 2, pp. 277-284, Feb. 1993.
    [26]Nikolopoulos, John, and G. L. Yip, "Characterization Of Proton-Exchanged Optical Waveguides In Z-Cut LiNbO [sub] 3 [/sub] Using Pyrophosphoric Acid," Integrated Optics and Optoelectronics, vol.1177, pp. 24-30, 1990.
    [27]A. Y. Yan, "Index instabilities in proton‐exchanged LiNbO3 waveguides," Applied Physics Letters, vol.42, pp.633-635, 1983.
    [28]M. Bortz, and M. Fejer, "Annealed proton-exchanged LiNbO 3 waveguides," Optics letters, vol.16, pp.1844-1846, 1991.
    [29]J. L. Jackel, and J. J. Johnson, "Reverse exchange method for burying proton exchanged waveguides," Electronics Letters, vol.27, no.15, pp.1360-1361, 1991.
    [30]W. Jin, K. S. Chiang, and Q. Liu, "Electro-optic long-period waveguide gratings in lithium niobate," Optics Express, vol.16, no.25, pp.20409-20417, 2008.
    [31]https://highscope.ch.ntu.edu.tw/wordpress/?p=76715
    [32]M. D. Perry, "High-efficiency multilayer dielectric diffraction gratings," Optics letters, vol.20, no.8, pp.940-942, 1995.
    [33]Othonos, Andreas, "Fiber bragg gratings," Review of scientific instruments, vol.68, no.12, pp.4309-4341, 1997.
    [34]A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," Journal of lightwave technology, vol.14, no.1, pp.58-65, 1996.
    [35]D. S. Starodubov, V. Grubsky, and J. Feinberg, "All-fiber bandpass filter with adjustable transmission using cladding-mode coupling," IEEE Photonics Technology Letters. Vol.10, no.11, pp.1590-1592, 1998.
    [36]A. W. Snyder, "Coupled-mode theory for optical fibers," JOSA, vol.62, pp.1267-1277, 1972.
    [37]M. N. Ng, Z. Chen, and K. S. Chiang, "Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect," IEEE Photonics Technology Letters, vol.14, pp.361-362, 2002.
    [38]K. S. Chiang, Y. Liu, M. N. Ng, and S. Li, "Coupling between two parallel long-period fiber gratings," Electronics Letters, vol.36, pp.1408-1409, 2000
    [39]V. Rastogi, and K. S. Chiang, "Long-period gratings in planar optical waveguides," Applied optics, vol.41, pp.6351-6355, 2002.
    [40]Q. Liu, K. S. Chiang, and V. Rastogi, "Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence," Journal of lightwave technology, vol.21, pp.3399-3405, 2003.
    [41]K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, "Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides," IEEE Photonics Technology Letters, vol.15, pp.1094-1096, 2003.
    [42]K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, "Widely tunable polymer long-period waveguide grating with polarisation-insensitive resonance wavelength," Electronics Letters, vol.40, pp.422-424, 2004.
    [43]X. W. Shu, L. Zhang, and I. Bennion, "Sensitivity characteristics of long-period fiber gratings," Journal of Lightwave Technology, vol.20, pp.255-266, 2002.
    [44]https://micro.magnet.fsu.edu/primer/techniques/fluorescence/tirf/tirfintro.html
    [45]R. W. Wood, and N. W. Ashcroft, "Philos. Mag," 1902.
    [46]U. Fano, "J. Opt. Soc. Am," 1941.
    [47]A. Hessel, and A. A. Oliner, "A new theory of Wood’s anomalies on optical gratings," Applied optics, vol.4, pp.1275-1297, 1965
    [48]邱國斌、蔡定平, "金屬表面電漿簡介," 物理雙月刊, pp.472-485, 2006.
    [49]Heinz Raether, "Surface plasmons on smooth and rough surfaces and on gratings," Spring-Verlag, Berlin Heidelberg, Germany, 1988.
    [50]K. Matsubara, S. Kawata, and S. Minami, "A compact surface plasmon resonance sensor for measurement of water in process," Applied spectroscopy, vol.42, no.8, pp.1375-1379, 1988.
    [51]R. Ulrich, and R. Torge, "Measurement of thin film parameters with a prism coupler," Applied Optics, vol.12, pp.2901-2908, 1973.
    [52]R. W. Chuang, Y. C. Huang, and Y. J. Lee, "Exploring the impacts of long-period corrugation and phase gratings on a cascade of phase-shifted lithium niobate waveguides with the combined theoretical and experimental approaches," Physics and Simulation of Optoelectronic Devices XXVII, vol. 10912, pp. 139-145, 2019.
    [53]D. L. Zhang, Y. Zhang, Y. M. Cui, C. H. Chen, and E. Y. B. Pun, "Long period grating in/on planar and channel waveguides: A theory description," Optics & Laser Technology, vol.39, pp.1204-1213, 2007.
    [54]A. R. Muhammad, M. F. Rusdi, A. A. A. Jafry, A. M. Markom, Z. Jusoh, H. Haris,and P. Yupapin, "Evanescent field interaction of 1550 nm pulsed laser with silver nanomaterial coated D-shape fiber," Infrared Physics & Technology, vol.119, 2021.
    [55]L. B. Soldano, and E. C. Pennings, "Optical multi-mode interference devices based on self-imaging: principles and applications," Journal of lightwave technology, vol.13.4, pp.615-627, 1995.
    [56]H. Li, X. Dong, E. Li, Z. Liu, and Y Bai, "Highly compact 2× 2 multimode interference coupler in silicon photonic nanowires for array waveguide grating demodulation integration microsystem," Optics & Laser Technology, vol.47, pp.366-371, 2013.
    [57]S. O. Kasap, "Optoelectronics and photonics: principles and practices: international edition," Pearson, pp.66-67, 2013.
    [58]Wei Jin, Kin Seng Chiang, and Qing Liu, "Thermally tunable lithium-niobate long-period waveguide grating filter fabricated by reactive ion etching," Optics letters, vol.35, pp.484-486, 2010.
    [59]A. Alcazarde, B. Ramiro, J. Rams, B. Alonso, G. Rojo, V. Bermudez, and J. M. Cabrera, "Temperature effects in proton exchanged LiNbO3 waveguides," Applied Physics, vol.B79, pp.845-849, 2004.
    [60]W. Jin, K. S. Chiang, Q. Liu, C. K. Chow, H. P. Chan, and K. P. Lor, "Lithium–Niobate Channel Waveguide for the Realization of Long-Period Gratings, " IEEE Photonics Technology Letters, vol.20, no.14, pp.1258-1260, 2008.
    [61]Ping-Rang Hua, De-Long Zhang, and Edwin Yue-Bun Pun, "Long-period grating on strip Ti: LiNbO3 waveguide embedded in planar Ti: LiNbO3 waveguide," IEEE Photonics Technology Letters, vol.22, pp.1361-1363, 2010.
    [62]Florence Y. M. Chan, and K. S. Chiang, "Analysis of apodized phase-shifted long-period fiber gratings," Optics communications, vol.244, pp.233-243, 2005.

    無法下載圖示 校內:2027-09-07公開
    校外:2027-09-07公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE